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Abstract

Vision-Language Models for Autonomous Driving (VLM-
AD) is gradually becoming a research hotspot. VLM en-
hances the performance of AD systems with excellent rea-
soning capabilities. However, it faces critical safety risks
to adversarial attacks. While current research predomi-
nantly focuses on digital adversarial attacks, physical at-
tacks against VLM-AD remain underexplored. In this paper,
we introduce the first Camouflage Attack framework CAM-
VLAD on Vision-Language Models for Autonomous Driv-
ing. Leveraging the vulnerability of some specific layers, we
design a novel method Feature Divergence Attack. Model-
ing physical camouflage textures as differentiable parame-
ters, we apply the adversarial attack in the vision-language
embedding, bypassing traditional pixel-level optimization.
The attack generates physically realizable textures to max-
imize feature distortion and mislead the decision of VLM-
AD. Experiments show our method achieves strong attack
performance making VLM-AD generate many wrong driv-
ing instructions.

1. Introduction
Vision-Language Models (VLMs) are becoming pivotal
decision-making systems for autonomous vehicles, combin-
ing visual perception with language understanding to enable
multimodal reasoning. These systems allow vehicles to in-
terpret driving instructions, generate explainable decisions,
and interact naturally with humans through dialogue. How-
ever, this multimodal fusion introduces significant security
risks. Studies reveal heightened vulnerabilities of VLM-AD
to adversarial attacks, such as reversing directional com-
mands. Recent advances in adversarial attacks on VLM-
AD are significant. CAD [5] targets low-level reasoning
breakdown by generating and injecting deceptive semantics.
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ADvLM [7] introduces Scenario-Associated Enhancement,
an approach where attention mechanisms select key frames
and perspectives within driving scenarios to optimize adver-
sarial perturbations. However, these approaches cannot be
effectively deployed in real-world physical environments.

One of the predominant physical attack methods is
patch-based attack but it remains limited in robustness due
to the multi-sensor configuration and diverse viewing an-
gles inherent in autonomous driving systems. Furthermore,
attack loss for object detectors cannot be effectively applied
in VLM-AD.

We propose a new camouflage attack framework in-
corporating feature divergence loss to disturb the feature
space of VLM-AD. Unlike traditional camouflage attacks,
our method is designed for the architecture of VLM-AD.
Specifically, CAM-VLAD targets the inherent vulnerabili-
ties in multimodal feature alignment, generating physically
realizable adversarial camouflage textures. This approach
exploits the feature vulnerabilities in autonomous driving
systems to generate adversarial camouflage texture. Specif-
ically, we consider attacking the visual feature of the en-
coder and projector layers to deviate from the original fea-
ture space. We also observe that the distribution of multiple
features in the output of the final hidden layer is sensitive
to changes in the camouflage textures, which inspires us
to introduce a variance-guided penalty to restrict the direc-
tion of optimization. Our framework achieves an end-to-end
feature-based attack pipeline, generating physical-world ad-
versarial textures that simultaneously deceive multimodal
semantic reasoning.

In summary, the main contributions list as follows:(1)We
are the first to introduce camouflage attacks on VLM-AD.
(2)By analyzing the shortcomings of existing approaches,
an innovative feature-based attack is proposed to target
VLM-AD. (3)Experimental results demonstrate that our
proposed attack method achieves strong performance and
excellent transferability.



2. Related Work

VLMs in Autonomous Driving. Recent advances in large
language models (VLMs) have expanded their applications
in autonomous driving. CODA-LM [1] introduced an auto-
mated benchmark for long-tail driving scenarios, using text-
based VLMs for evaluation and demonstrating enhanced
decision analysis via structured prompts. Dolphins [3] de-
veloped a chain-of-thought reasoning framework for mul-
timodal interaction, enabling real-time learning and self-
correction through driving-instruction fine-tuning. Om-
niDrive [6] proposed a sparse query-based architecture for
3D scene modeling, integrating dynamic-static object rep-
resentation with memory-enhanced positional encoding.
Physical Adversarial Attacks. Physical adversarial attacks
manipulate object characteristics to deceive vision sys-
tems, categorized into patch-based and camouflage-based
approaches. Patch-based methods apply localized adversar-
ial patterns to object surfaces or backgrounds. Those meth-
ods are mainly designed to attack object detectors. DGA
[8] propose a new direction-guided attack to deceive real-
world aerial detectors. However, their planar constraints
limit robustness under multi-view or long-distance condi-
tions. Camouflage-based methods enhance stealth by op-
timizing 3D textures or shapes. FCA [4] introduced Full-
coverage Camouflage Attack, which maps adversarial tex-
tures onto entire vehicle surfaces using neural rendering and
environmental transformations to address multi-view fail-
ures.
Adversarial Attacks on VLM-AD. Adversarial attacks on
VLMs for autonomous driving systems have attracted sig-
nificant attention, focusing on dynamic scene adaptability,
multimodal vulnerabilities, and robustness in safety-critical
scenarios. Zhang et al. [7] developed ADvLM, employing
semantic-invariant induction to create instruction libraries
and scene-correlation optimization for temporal perturba-
tions, enhancing attack robustness across dynamic perspec-
tives. For black-box scenarios, Wang et al. [5] proposed the
Cascaded Adversarial Disturbance (CAD) framework, in-
ducing cross-reasoning-chain errors via decision-chain dis-
ruption and risk-scenario induction in dynamic environ-
ments.

3. Method

Figure 1 shows the framework to attack VLM-AD. The at-
tack scheme is to generate the adversarial camouflage tex-
ture utilizing the neural renderer to paint on the surface of
the 3D vehicle model. Based on the analysis of the vul-
nerability of VLM, we manipulate the intermediate features
of vision models, projectors, and hidden layers of VLM to
disturb the output of models.

3.1. Problem Formulation

Given a training dataset (X,θc) where X and θc are the sam-
pled images and the corresponding camera parameters re-
spectively, a 3D car model with a mesh M and a texture T,
2D car image O can be generated by a renderer R:

XT = R(M,T; θc). (1)

To realize the adversarial camouflage attack, we replace the
origin texture T with adversarial texture Tadv and obtain
the adversarial image XTadv

with transformation function
ϕ. We aim to input (Xadv ,t) to attack F to output the wrong
text or reduce its performance where F is VLM-AD and t
is the benign text input.

We treat the manipulation as an optimization problem,
and the function is expressed as follows

T̂adv = argmax
Tadv

J (F(ϕ(XT), t),F(ϕ(XTadv
), t)), (2)

where T̂adv is the trained adversarial texture and J (·, ·) is
the loss function.

3.2. Camouflage Attack

We generate the adversarial camouflage texture by utilizing
a differentiable neural renderer. It enables the direct ap-
plication of customized textures onto 3D car models. This
is the first attempt in the field of autonomous driving ad-
versarial attacks. To ensure the naturalness of the generated
adversarial camouflage, we utilize the smooth loss to reduce
the inconsistency among adjacent pixels. For a rendered car
image painted with adversarial camouflage Xadv , the calcu-
lation of smooth loss can be written as

Lsmooth =
∑
i,j

(
(xi,j − xi+1,j)

2 + (xi,j − xi,j+1)
2
)
, (3)

where xi,j is the pixel value of Xadv at coordinate (i, j).

3.3. Feature-Divergence

The VLM-AD mainly consists of an encoder, a projection
layer, and internal hidden layers. Inspired by VLM-based
digital attacks[2], we consider a multi-layer feature attack
that causes the features before and after the layers to devi-
ate.

The outputs of the encoder and projection layers are
more worthy of attention compared to the intermediate lay-
ers of the VLM, for the following two reasons: 1) The in-
termediate layers of the VLM are greatly influenced by text
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Figure 1. Attack Framework CAM-VLAD. Our approach introduces Feature-Divergence which targets to attack feature space of the
encoder and projector. Variance-Penalty is proposed to guide attack direction towards variance increment.

input and visual information is conditional guidance. 2)
Attacks on the encoder and projection layers exhibit better
transferability. we extract spatiotemporal representations of
X and XTadv

using the vision encoder FV . To make the fea-
tures diverse, we optimizes the adversarial texture by min-
imizing the cosine similarity between the original and the
adversarial features:

LV =

N1∑
i=1

cos(FV (X)i,FV (XTadv
)i)

N1
, (4)

where FV (X)i and FV (XTadv
)i) is the i-th feature of X

and XTadv
, cos(·, ·) is cosine similarity loss. Similarly, the

projector attack can be implemented by minimizing the fol-
lowing projector feature loss:

LP =

N2∑
i=1

cos(FV P (X)i,FV P (XTadv
)i)

N2
, (5)

where FV P (·) is vision encoder and projector function.

Variance-Penalty. The above attack is in the direction of
deviating from the feature space of the original sample.
However, without constraints, the attack may become un-
stable. Therefore, we consider constructing a penalty term
on the output of the last hidden layer, encouraging the fea-
ture distribution of the image to deviate towards increased
variance, thus making the model easier to mislead. Penalty
term can be calculated as follows:

P = min
1≤i≤n

Var(F i
h(XTadv

)), (6)

where Var is the variance of features, Fh(XTadv
) is the out-

put of the last hidden layer, n is the number of features.

Total loss can be written as

L = Lsmooth + αLV + βLP − λP, (7)

where α, β and λ are the weights to balance the contribution
of loss term.

4. Experiment

4.1. Experiment Setup

We select SoTA VLM-based AD models Dolphins for at-
tack. We implement patch attack DGA and a camouflage
attack FCA [4] for AD to be baseline methods. We follow
the common practice metrics in relevant works for compar-
ison: CODA-LM [1] uses text-only VLMs, e.g. GPT-4, as
evaluators to score model responses. OmniDrive [6] em-
ploys rule-based language metrics to evaluate sentence sim-
ilarity at the word level. We follow FCA to utilize photo-
realistic datasets to perform the experiments. We select the
simulator CARLA for AD research. The CARLA simulator
provides a variety of high-fidelity digital scenarios. We use
the same datasets with FCA directly, the training set con-
sists of 12,500 high-resolution images. Learning rate and
max epoch is 0.1 and 5 respectively.

4.2. Attacking performance

In this experiment, we evaluate the effectiveness of our
method against VLM-AD, with a focus on performance
metrics from both the VLM-Judge and NLP metrics. The
results are compared with various existing attack methods.
As shown in Table 1, our method performs strong perfor-
mance and We lead in all metrics and significantly outper-
form other physical attack methods. Notably, in the average
of NLP metric, our method achieves 48.30%, which is com-
parable to FCA’s 54.64%, leading by 6.34%.



Type Metrics Noise DGA[8] FCA[4] Ours

VLM-Judge

General↓ 10.00 8.20 7.80 6.20
Regional↓ 10.00 8.60 7.60 6.40

Suggestion↓ 10.00 7.10 7.90 6.30
Average↓ 10.00 7.97 7.77 6.30

NLP metrics

BLEU↓ 100% 57.77% 53.99% 48.45%
METEOR↓ 100% 66.01% 49.22% 42.16%
ROUGE↓ 100% 78.26% 60.71% 54.30%
Average↓ 100% 67.34% 54.64% 48.30%

Table 1. Attack performance comparison with patch-base attack
and camouflage attack

BLEU METEOR ROUGE Average

LV 73.90% 70.17% 77.70% 73.92%
LP 52.02% 46.25% 58.45% 52.24%

LP + LV 49.26% 43.36% 55.55% 49.39%
αLP + βLV − λP 48.45% 42.16% 54.30% 48.30%

Table 2. Ablation study on different loss.

Question:<image>is a driving image. Please de-
scribe it in detail. 
Answer:The image shows a road with a car drivi-
ng down it. The car is positioned in the middle of 
the road, and there are no other vehicles visible. 
The road appears to be empty, providing a clear 
path for the car to continue its journey.

Clean Input

Question:<image>is a driving image. Please de-
scribe it in detail. 
Answer:The image  shows  a  car  driving  down 
a road. The road is painted with yellow lines, and  
there are  several  cars  parked  on both sides of 
the road. There is a stop sign in the distance. The 
car in the image is driving forward with its winds
hield wipers on, indicating that it is raining.

Attack Input

Figure 2. Visualization Before and After Attack.

Figure 2 shows an attack case. In the pre-attack output,
the VLM-AD accurately describes the image of a road with
a car driving on it. The green highlights indicates the orig-
inal keywords, all of which are relevant and correct based
on the image content. After the camouflage attack, the de-
scription of VLM-AD significantly deviates from the orig-
inal content. Key errors are highlighted in red, such as the
statement that ”several cars are parked on both sides of the
road” and the image ”indicating that it is raining.” These er-
rors are clearly incorrect based on the original image, where
there were no cars parked and the weather conditions are not
depicted as rainy. Lastly, it can be seen that VLM-AD tends
to output longer texts, which indicates that our attack has
affected the performance.
Ablation Study. The results in Table 2 show the im-
pact of different loss functions on the attack performance.

Encoder and projector attack shows great attacking per-
formance, leading far beyond the single attack. With
the variance-guided penalty, our method achieves the best
scores, demonstrating the most effective attack by suc-
cessfully manipulating the outputs. These results confirm
that our designed attack strategy significantly impacts the
model’s performance.

5. Conclusion

We propose a novel camouflage attack CAM-VLAD to dis-
turb features of the VLM-base autonomous driving sys-
tem. The experiment demonstrates the effectiveness of
our attack method and its applicability to physical environ-
ments.
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