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Abstract

Recent vision-language models have accelerated multimodal
brain decoding, including brain captioning, which aims to
translate brain activations into natural language. Typically,
state-of-the-art models use either image or text for multi-
modal brain alignment. However, relying on image or text
alone fails to capture the full range of brain activity. In this
paper, we present MEVOX, a brain captioning method that
introduces multi-expert vision systems for omni-contextual
explanations. MEVOX ensembles multiple task-specific ex-
perts to capture distinct aspects of brain perception. By
leveraging experts from various domains, we demonstrate
that the proposed method can effectively pool this expert
knowledge and adapt it to specific brain functions. Exper-
imental results show that our method achieves competitive
performance compared to current state-of-the-art methods.

1. Introduction

Recent advances in multimodal brain decoding have signifi-
cantly deepened our understanding of how brain activations
relate to visual perception and cognition [1]. These acti-
vations are captured when human participants view visual
stimuli, and brain captioning aims to decode these neural
recordings into natural language descriptions [6, 22, 28].
However, current brain captioning methods mostly rely on
image or text as supervision for multimodal alignment, often
failing to capture the full spectrum of brain activities and the
intricate processing in neural functions.

The human visual system in the brain is known for its
hierarchical structure, with each region specializing in spe-
cific functions [5, 9, 19, 29]. For example, V1 processes
low-level features such as edge detection and orientation fil-
tering. The organization of the visual brain follows a largely
feed-forward structure, starting with V1, which receives di-
rect input from the retina of the eye, and progressing to
higher-level regions that represent increasingly abstract fea-
tures. This hierarchical and specialized structure makes the
brain a multi-tasking processor, analogous to corresponding
computer vision tasks. Despite some exploration [28], this

similarity has not been widely considered in brain decoding.
To bridge this gap, we propose using specialized vision

experts for brain captioning to emulate the functional ar-
chitecture of the visual cortex. By adopting a multi-expert
perspective, we capture distinct aspects of brain perception,
enhancing both the accuracy and contextual awareness of
brain activity interpretations. This enables us to better repli-
cate the hierarchical processing in the brain and provide more
nuanced, task-specific insights into the underlying cognitive
processes. Specifically, in this paper, we present MEVOX, a
brain captioning method that introduces Multi-Expert Vision
systems for Omni-contextual eXplanations. Our method en-
lists a set of task-specific experts, each trained to capture
particular facets of brain processing—ranging from low-level
visual features to high-level semantic concepts. MEVOX
mimics the multitasking within the visual cortex by pool-
ing expert knowledge from diverse domains, enabling it to
adapt to specific brain functions and capture the intricate,
multi-faceted nature of brain activity. Experimental results
demonstrate that MEVOX achieves competitive performance
compared to state-of-the-art methods, offering a promising
direction for future multimodal brain decoding research.

2. Related Work

Brain Captioning. Current brain captioning methods are
broadly divided into two categories. The first category uses
text annotations from COCO as supervision, learning a map-
ping (either through a trained encoder or direct regression) to
predict text descriptions from brain signals using language
models. For example, SDRecon employs ridge regression
to align brain signals with intermediate representations of
a language model, followed by a decoder to generate text
descriptions. BrainCap [6] follows a similar pipeline but
replaces the captioning model. OneLLM [7] introduces a
unified encoder for multimodal-text alignment, improving
caption quality but reducing CLIP similarity scores due to its
exclusive alignment with text. The second category aligns
brain signals with image features from the visual components
of multimodal large language models (MLLMs), leveraging
their inherent image captioning capabilities. This can be
considered zero-shot since no text annotations are used. UM-
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BRAE, for example, aligns brain signals with image features,
preserving more accurate semantic and spatial information.
The integration of LLMs further enhances the fluency, com-
pleteness, and informativeness of the generated captions.

Brain Alignment. The prevailing practice for multimodal
brain alignment is to map neural modalities into a shared
multimodal space [7, 17, 22, 28]. For example, OneLLM [7]
employs generative training to learn multimodal alignment,
connecting multimodal inputs, including brain signals, with
an LLM. Other methods align brain signals within a pre-
trained representation space, such as CLIP [20], using lin-
ear regression [17, 25], contrastive learning [29], diffusion
priors [21], or feature reconstruction [28]. The target for
alignment can be either embeddings or features, depending
on the method. Since brain signals exhibit significant vari-
ations across subjects, most of these alignment strategies
require per-subject training or subject-specific annotations,
which can lead to scalability issues in practice. Therefore, an-
other important aspect of brain alignment is mapping brain
signals from different subjects to a shared representation
space [22, 28], which can enhance performance and alleviate
the challenges associated with individual subject variability.

3. MEVOX
This section details the method in Fig. 1. We first provide
the rationale for connecting the human visual cortex with
computer vision experts (Sec. 3.1). Next, we present the data
preprocessing (Sec. 3.2) and the training objective (Sec. 3.3).

3.1. Human Visual Cortex
Studies have shown that the human brain follows a hier-
archical structure, with each region specializing in specific
functions. Different regions in the visual cortex process vary-
ing levels of visual granularity [5, 9, 19]. Specifically, early
visual areas such as V1 and V2 encode low-level features
like depth, edges, and shapes, corresponding to tasks such
as depth estimation, normal estimation, and edge detection
in computer vision. More complex semantic concepts are
processed in areas like V4 and ITC, mirroring object detec-
tion and semantic segmentation processes. It is also well-
established that different brain regions exhibit functional
selectivity for categories such as faces, places, bodies, and
words. The previous five tasks cover the first three categories
from different perspectives but lack information on word
processing. OCR (Optical Character Recognition) for text
reasoning can be introduced to bridge this gap, enabling the
model to capture brain functions related to word processing.

3.2. Vision Experts
We use six pretrained vision task experts as black-box predic-
tors to produce multiple task-specific labels. These experts
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Figure 1. Overview. MEVOX ensembles multiple task-specific
experts to capture distinct aspects of brain perception. The brain
encoder learns to align with omni-contextual explanations.

encode three low-level vision signals (depth, surface normals,
and edges) and three high-level vision signals (object labels,
semantic labels, and OCR labels). Experts are frozen to
retain domain-specific knowledge encoded in their network
parameters. These expert models are relatively lightweight,
incurring minimal additional training and inference costs
with simple model parallelism. We apply task-specific post-
processing on predicted labels from different vision experts,
transforming them to a tensor yi ∈ RH×W×C (here H , W ,
C represent image height, width and channel respectively,
e.g. C = 1 for depth and edge, and C = 3 for surface normal).

The most straightforward way is to use the labels from
the six vision experts, with images as input, to train a corre-
sponding model that decodes brain activations into specific
domain labels. However, this requires training the same num-
ber of models as there are experts, making it inflexible and
computationally intensive. Instead, we employ a multimodal
feature adaptor [14] R to merge the predicted labels. The
adaptor learns a predefined number of latent input queries
to cross-attend to a flattened embedding concatenated from
all multi-task features. It first maps the features to a uniform
dimensionality and then processes a variable number of ex-
pert labels, outputting a fixed number of tokens. Specifically,
a given image v is first fed into vision expert Ei to produce
a set of predictions {yi}ki=0 = Ei(v), where each yi repre-
sents the output of the i-th vision expert Ei and k is the total
number of experts. The set of predicted features {yi}ki=0 is
then passed into the adaptor R, which generates tokens c to
produce the tokens that are fed into the language decoder D
to produce the final captions. The full process from v to the
tokens c ∈ RB×N×L can be expressed as:

c = g(v) = R
(
{Ei(v)}ki=0

)
for i = 0, 1, . . . , k. (1)

This ensures constant memory usage for self-attention
in the vision encoder and vision-text cross-attention in the
language decoder, independent of expert numbers.
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Table 1. Brain Captioning on BrainHub. Models with ‘-S’ refers to a cross-subject model trained in a single-subject setting. MindEye2
results are based on a model pre-trained on seven subjects and then adapted to the remaining one with the full dataset. The mark† denotes
zero-shot methods, indicating no external captions were used for training. The best and second-best performance are highlighted.

Method LLM BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE CLIP-S RefCLIP-S

SDRecon [25] BLIP [10] 36.21 17.11 7.72 3.43 10.03 25.13 13.83 5.02 61.07 66.36
OneLLM [7] OneLLM [7] 47.04 26.97 15.49 9.51 13.55 35.05 22.99 6.26 54.80 61.28
BrainCap [6] GIT [27] 55.96 36.21 22.70 14.51 16.68 40.69 41.30 9.06 64.31 69.90
MindEye2 [22] GIT [27] 54.82 38.60 26.49 18.16 17.54 43.77 55.70 10.97 67.54 73.73
ViT3D [23] LLaVA [13] 57.19 37.17 23.78 15.85 18.60 36.67 49.51 12.39 65.49 -
UMBRAE-S† Shikra [4] 57.63 38.02 25.00 16.76 18.41 42.15 51.93 11.83 66.44 72.12
UMBRAE [28]† Shikra [4] 59.44 40.48 27.66 19.03 19.45 43.71 61.06 12.79 67.78 73.54
MEVOX-S† RoBERTa [15] 56.84 37.66 25.30 17.49 18.52 43.17 49.89 10.33 63.81 69.60
MEVOX† RoBERTa [15] 58.56 40.36 28.09 20.11 19.20 44.47 54.37 11.05 64.23 70.36

3.3. Training Objective
Let B denotes the metric space of brain signals and V refers
to images, with f and g as the fMRI encoder and visual
experts, respectively. Given brain responses s ∈ R1×Ls and
corresponding visual stimuli v ∈ RW×H×C , we train the
brain encoder f to align brain tokens b with image tokens c
extracted from the vision encoder g, aiming to approximate
f(s) ≈ g(v). Toward the objective, the most straightforward
alignment is element-wise feature reconstruction [28]:

LR = E∥f(v)− g(s))∥22, (2)

where f learns to map brain signals from space B to image
space V . During training, only parameters of the brain
encoder f are updated, while visual experts g and language
decoders D remain fixed with pre-trained weight.

4. Experiments
4.1. Implementation Details
We trained a transformer-based encoder [28] to project brain
voxel signals into the same embedding space as image fea-
tures for alignment. We leveraged the pre-trained Pris-
mer [14] as the vision expert encoder to produce the omni-
contextual visual tokens c ∈ RB×N×L as the supervisry
signal, where B is the batch size, token number N is 1,220,
and token dimension L is 1,024. All experiments were con-
ducted on a single A100 GPU. We use the AdamW opti-
mizer [16] with β1=0.9, β2=0.95, and a weight decay of
0.01. The learning rate was scheduled using the one-cycle
strategy [24], starting with an initial learning rate of 3e-4.

4.2. Brain Captioning
We conducted all experiments on the Natural Scenes Dataset
(NSD) [1], which contains fMRI signals recorded during
experiments and visual stimuli from COCO [12]. Following
prior studies [22, 25, 28–30], we adopt the standard train and
test splits for four subjects (subjects 1, 2, 5, 7), each with
24,980 training samples and a shared 982 test samples. For
evaluation, we report the average of the three repetitions of

the same image in the test set, totaling 982 samples per sub-
ject. For brain captioning, we use RoBERTa [15] as a frozen
language decoder to generate natural language descriptions.
For quantitative comparison, we adopt BrainHub [28], using
ground truth captions sourced from COCO [12]. The gen-
erated captions are evaluated with seven standard metrics:
BLEU-k [18], METEOR [3], ROUGE-L [11], CIDEr [26],
SPICE [2], CLIP-Score [20], and RefCLIP-Score [8].

We train the fMRI encoder to align the voxel tokens with
the omni-contextual visual tokens from the multi-task en-
semble. The model training follows two scenarios: single-
subject training (subject 1) and cross-subject training (sub-
jects 1, 2, 5, and 7). In cross-subject training, two subjects
are randomly selected in each epoch to compute the recon-
struction loss for parameter updates. By learning a shared
representation, the model aligns fMRI signals with visual
tokens, enabling effective cross-modal correspondence. The
language model will load the voxel tokens instead of im-
age tokens to describe image details. Compared with prior
studies [7, 25, 28], our method achieves state-of-the-art per-
formance across metrics, except for the cross-subject UM-
BRAE [28]. The performance gap may be attributed to the
use of more powerful MLLMs. MindEye2 [22] results are
from a model pre-trained on seven subjects and adapted to
the remaining one, with additional training subjects boost-
ing performance. The experimental results demonstrate the
effectiveness of introducing vision experts to pool omni-
contextual knowledge and adapt it to specific brain functions.

5. Conclusion
In this paper, we present a novel brain captioning method
that emulates the hierarchical structure of the visual cortex.
Grounded in the principles of the human visual system, our
method aligns brain activation with multi-expert vision sys-
tems for omni-contextual explanations. Our method, despite
zero-shot, achieves competitive performance compared to
the state-of-the-arts, demonstrating the effectiveness of inte-
grating specialized vision experts for brain caption decoding.
Acknowledgements. This work was supported by UKRI Future Leaders Fellowship
[grant number G104084] and Imminent Research Grant.
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