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Abstract

Adversarial training is a common strategy for enhancing
model robustness against adversarial attacks. However, it
is typically tailored to the specific attack types it is trained
on, limiting its ability to generalize to unseen threat models.
Adversarial purification offers an alternative by leveraging
a generative model to remove perturbations before classifi-
cation. Since the purifier is trained independently of both
the classifier and the threat models, it is better equipped
to handle previously unseen attack scenarios. Diffusion
models have proven highly effective for noise purification,
not only in countering pixel-wise adversarial perturbations
but also in addressing non-adversarial data shifts. In this
study, we broaden the focus beyond pixel-wise robustness to
explore the extent to which purification can mitigate both
spectral and spatial adversarial attacks. Our findings high-
light its effectiveness in handling diverse distortion patterns
across low- to high-frequency regions.

1. Introduction
The accuracy of neural network predictions is often com-
promised by distributional shifts, whether adversarially
crafted [11, 32, 80] or naturally occurring [6, 36], and
whether these shifts manifest at the pixel level [58, 81] or
the frequency level [24, 56].

Pixel-wise adversarial attacks are designed to be min-
imally detectable, leveraging subtle perturbations to mis-
lead models while preserving visual similarity [32]. Their
imperceptibility is typically measured using ℓp norms [13,
16, 46, 58, 61] and, in some cases, human perception
[24, 55, 71, 95].

These perturbations are typically crafted through an opti-
mization process to maximize the model’s loss and are then
added to the original input [45, 46, 58, 63]. The Fast Gra-
dient Sign Method (FGSM) [32] approximates this max-
imization by performing a single gradient step to identify
the direction in which the loss increases most rapidly. Itera-
tive extensions, such as the Basic Iterative Method [45] and

Projected Gradient Descent (PGD) [58], strengthen FGSM
by applying multiple iterations to refine the adversarial per-
turbation. AutoAttack [21] further advances these tech-
niques by combining two parameter-free PGD variants with
the Fast Adaptive Boundary attack [20] and the Square At-
tack [3], enabling both white-box and black-box attacks.

Frequency-based attacks modify images by adjusting en-
ergy in specific frequency bands [24, 43, 56]. This often
involves transforming the image into the frequency domain,
making subtle modifications, and then converting it back, all
while preserving visual quality and minimizing perceptible
noise [38, 72]. AdvDrop [29] removes features essential to
the model yet unnoticeable to human observers by quanti-
tatively reducing targeted frequency components [29].

Frequency-domain filtering constrains perturbations to
high-frequency components [56] or narrows the search
for adversarial images to low-frequency regions [34].
Frequency-selective attacks independently manipulate am-
plitude and phase components, enabling more precise con-
trol over perturbations [43]. Some methods introduce
large perturbation magnitudes [38], while others acceler-
ate feature collapse in vision transformers [26] by exploit-
ing their reliance on low-frequency components [30]. F-
mixup [51] generates adversarial examples by blending
the low-frequency component of one class with the high-
frequency component of another. Frequency Dropout [96]
reduces certain gradient frequency coefficients to improve
attack transferability, assuming that high-frequency com-
ponents contain noise and overfitting details related to the
substitute model. AdvINN [16] utilizes Discrete Wavelet
Transform to decompose the clean and target images into
low- and high-frequency components. It then generates ad-
versarial samples by exchanging feature-level information,
suppressing discriminative details in the clean images, and
embedding class-specific attributes from the target samples.

Beyond these methods, other attack strategies employ
generative models [15, 39], alter pixel positions [89],
or leverage transformations such as subtly modifying
shape [89], as well as modifying texture and color [1, 10,
71], or combining all of these within the image content [17].



In response, various defense mechanisms exist, includ-
ing defensive distillation [68], feature squeezing [91], logit
pairing [41], adversarial detection [59, 67], gradient regu-
larization [83, 88], adversarial training [32, 58, 87], and ad-
versarial purification [50, 53, 65, 92].

Among these approaches, adversarial training has been
shown to be highly effective [5, 8, 12, 32, 45, 63]. How-
ever, it often comes with a trade-off between robustness
and accuracy [84, 94], as well as between in- and out-of-
distribution generalization [94]. It can also interfere with a
model’s invariance to input transformations [40, 73] , while
amplifying performance disparities across different classes
[9, 57]. Moreover, adversarial training shows limited gen-
eralization to unseen attacks [47, 79]. While models ex-
hibit robustness against the specific threat model they were
trained on, they often remain vulnerable to others [82]. For
example, models trained with ℓ∞ threat models may lack
robustness to ℓ2 or spatial adversarial perturbations, and
vice versa [65].

Unlike adversarial training, adversarial purification uses
a generative model to remove adversarial perturbations
from images prior to classification [92]. This approach of-
fers greater flexibility, as the purification models are trained
independently without any assumptions about the attack
type or classifier, making them effective against a wide
range of previously unseen adversarial perturbations [65].
The use of diffusion models [25, 37, 77] for noise purifica-
tion has proven highly effective in countering pixel-wise ad-
versarial perturbations, consistently outperforming adver-
sarial training in ℓ∞ and ℓ2 threat models [65], as well as in
certified adversarial robustness [14]. Moreover, their effec-
tiveness extends beyond adversarial robustness to broader
data shifts, including variations in style [93], as well as non-
adversarial perturbations [31]. Moving beyond pixel-wise
robustness, this paper broadens the lens and provides in-
sight into how purification handles shifts in both spatial and
spectral domains.

2. Related Works
Having explored adversarial attacks, the following section
reviews literature on methods for addressing unseen attack
scenarios and adversarial purification techniques.

Robustness Against Unforeseen Attacks. Many de-
fense mechanisms offer guarantees based on specific threat
models [19] or integrate knowledge of the threat model
during training [58]. Adversarial training, while effective
against known threats, primarily relies on generated pertur-
bations and thus struggles to generalize to unseen attacks. It
typically assumes the adversary follows a predefined threat
model, such as ℓp-bounded perturbations within a fixed bud-
get, which may not always hold true [47].

One approach to mitigating unseen threats involves gen-
erating adversarial examples for all types of perturbations

and training on either all of these examples or focusing on
the worst-case scenario [82]. Dual Manifold Adversarial
Training leverages information about the underlying mani-
fold of natural images, employing adversarial perturbations
in both the latent and image spaces, enabling generalization
to both ℓp-bounded and non-norm-bounded threats. Varia-
tion Regularization reduces the variation in the feature ex-
tractor across the source threat model during training, im-
proving the model’s ability to generalize to previously un-
seen attacks [22]. Confidence-calibrated adversarial train-
ing introduces a target distribution that favors uniformity
for large perturbations, allowing the model to extrapolate
beyond the threat model employed during training [79].
Additionally, some methods offer bounds for generalizing
to an unknown adversary with oracle access during train-
ing [62].

Adversarial purification. Adversarial purification em-
ploys a standalone model that removes adversarial noise
from potentially attacked images, restoring them to a clean
state for classification [65, 76, 78, 92]. Defense-GAN [70]
leverages Wasserstein GANs [4] to model the distribu-
tion of unperturbed images and, during inference, recon-
structs an image free of adversarial perturbations by find-
ing a latent vector that minimizes the difference between
the generated and input images, which is then classified
[70]. PixelDefend [76] utilizes the autoregressive genera-
tive model PixelCNN [85] to detect and purify adversar-
ial examples. Some approaches employ energy-based mod-
els [28, 33, 78] to purify attacked images through Langevin
dynamics, while others rely on denoising score-based gen-
erative models [75, 92]. DiffPure [65] uses diffusion models
to purify adversarial examples prior to inputting them into
classifiers. A guided diffusion model for adversarial purifi-
cation employs the difference between an adversarial ex-
ample and a purified one as a form of guidance [86]. Alter-
natively, it may utilize an auxiliary neural network, trained
through adversarial learning, to steer the reverse diffusion
process based on latent representation distances rather than
pixel-level values [53]. Another approach involves the use
of contrastive guidance [7].

DensePure [90] performs multiple denoising steps with
different random seeds to generate reversed samples, which
are then classified and combined through majority voting
for the final prediction. Other methods use random trans-
forms to prevent overfitting to known attacks and fine-tune
the purifier model with adversarial loss to enhance robust-
ness [52], or adopt a gradual noise-scheduling strategy to
strengthen diffusion-based purification [48]. While these
works primarily investigate pixel-wise adversarial pertur-
bations in the spatial domain, we redirect the focus toward
frequency-based perturbations in the spectral domain, as it
remains a less-studied aspect of adversarial purification and
robustness.



Clean Adversarial Diffused Purified

Figure 1. Clean, adversarial, diffused, and purified images. The clean image is the original, uncorrupted image from ImageNet. The
adversarial image is generated for ResNet-50 by perturbing all components (magnitude, phase, and pixel values) of the image. The
adversarial image is then purified using diffusion purification. The diffused image corresponds to t∗ = 0.15, and the purified image is
obtained at t = 0.
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Figure 2. Adversarial examples generated by perturbing the magnitude, phase, and pixel values across various architectures. The perturba-
tions, representing the differences between the original and attacked images (magnified by a factor of 20 for visualization). The distortion
histograms, obtained by applying the Fourier transform to the perturbations, highlight the impact of each attack on the spectral characteris-
tics of the images. In ResNet-50 [35], the distortion is primarily concentrated in high-frequency regions, while ViT-B [27] and Swin-B [54]
exhibit distortions mainly in the mid-to-low frequency ranges.

3. Attack and Defense Mechanisms
In this section, we provide a detailed description of the at-
tack method and the purification technique used.

3.1. Frequency-Based Attacks
Targeting different image components creates distinct dis-
tortion patterns within the image, which also vary depend-
ing on the chosen model. Figure 2 illustrates various attack
distortion patterns by perturbing the pixel values, phase,
amplitude, or a combination of these elements in a clean
image (leftmost in Figure 1), as described below.

An image x in the spatial domain can be represented in
the frequency domain through the Discrete Fourier Trans-
form (DFT) [18], which decomposes the image into its fre-
quency components. The Fourier transform of an image x
can be expressed as:

F{x} = M · eiϕ, (1)

where M and ϕ represent the magnitude (amplitude)
and phase spectra, respectively. Following [43], to gener-
ate an adversarially perturbed image x′, we apply a combi-
nation of multiplicative magnitude perturbation δmag, addi-
tive phase perturbation δphase, and additive pixel perturba-
tion δpixel. The perturbed image x′ is thus given by:

x̃′ = F−1
(

clip0,∞ (M ⊗ δmag) · ei(ϕ+δphase)
)
+ δpixel, (2)

where F−1 denotes the inverse Fourier transform, ⊗
represents element-wise multiplication, and clip0,∞ trun-
cates the values of the magnitude spectrum within the range
[0,∞). The image x̃′ is the intermediate image obtained
after the inverse Fourier transform.

To ensure that the pixel values remain within the valid
range [0, 1], the resulting image is clipped as follows:

x′ = clip0,1 (x̃
′) , (3)
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Figure 3. Diffusion-driven purification introduces noise to adversarial images by following the forward diffusion process with a small
diffusion timestep t∗ to obtain the diffused images. These images are then denoised through the reverse denoising process to recover the
clean images before classification.

The magnitude perturbation δmag modifies the strength
of the frequency components, while the phase perturba-
tion δphase alters the spatial alignment, resulting in structural
changes that may not be visually perceptible. The term δpixel
represents an additive perturbation in the spatial domain.

To maintain real-valued pixel outputs from the inverse
Fourier transform, the perturbations δmag and δphase are kept
symmetric. Adversarial attacks can be performed using a
single perturbation δmag, δphase, or δpixel, which we refer to as
a magnitude attack, phase attack, and pixel attack, respec-
tively. Additionally, combinations of multiple perturbations
are possible, which we also explore in this work.

To obtain the adversarial image x′, the perturbations are
optimized via gradient descent. To limit distortion (for im-
perceptibility) while maximizing the cross-entropy loss and
thereby misleading the classifier, the optimization process
minimizes the ℓ2 difference between the original and per-
turbed images. The loss function is formulated as:

L = λ · ℓ2(x′, x)−
∑
k

yk log fk(x
′) (4)

where λ is a balancing parameter that controls the trade-
off between distortion and classification loss. Here, fk(x′)
represents the classifier’s predicted probability for class k,
and y is the one-hot ground truth label.

3.2. Diffusion-Driven Purification Defense
Here, we first overview continuous-time diffusion models,
followed by the diffusion purification method used.

Continuous-Time Diffusion Models. Diffusion-based
probabilistic generative models operate by progressively
corrupting training data with noise and then learning to re-
verse this corruption, effectively modeling the underlying
data distribution [25, 37, 75, 77]. Denoising Diffusion Prob-
abilistic Models (DDPMs) learn to generate data by revers-
ing a Markovian diffusion process that maps complex data
distributions to a simple prior, typically an isotropic Gaus-
sian, refining noise into structured samples [37, 64, 74].
Instead of applying noise in discrete steps, continuous-
time diffusion models use stochastic differential equations

(SDEs) to gradually transform data into noise and vice
versa [77]. Formally, given the unknown data distribution
p(x) from which each data point x ∈ Rd is sampled, the
diffusion process gradually transitions p(x) towards a noise
distribution. The forward diffusion process {x(t)}t∈[0,1],
can be described by the following stochastic differential
equation:

dx = h(x, t)dt+ g(t)dw, (5)

where x(0) := x ∼ p(x), h : Rd × R → Rd repre-
sents the drift coefficient, g : R → R is the diffusion co-
efficient, and w(t) ∈ Rn is the standard Wiener process
(a.k.a., Brownian motion). Under suitable conditions con-
ditions [2, 77], the reverse process exists and undo the added
noise by solving the reverse-time SDE:

dx̂ =
[
h(x̂, t)− g(t)2∇x̂ log pt(x̂)

]
dt+ g(t)dw, (6)

where dw represents the reverse-time standard Wiener pro-
cess, and ∇x log pt(x) denotes the time-dependent score
function. Following the conventions of the variance-
preserving stochastic differential equation (VP-SDE) [77],
the drift and diffusion terms are given by

h(x; t) = −1

2
β(t)x, g(t) =

√
β(t), (7)

with β(t) representing a time-dependent noise scale,
which is positive and continuous over the interval [0, 1],
such that the state at time t can be rewritten as:

x(t) =
√
αtx(0) +

√
1− αtϵ, (8)

where αt = e−
∫ t
0
β(s)ds, and ϵ ∼ N (0, I). We denote

the reverse-SDE by {x̂t}t∈[0,1] from Eq. 6, which follows
the same distribution as the forward-SDE {xt}t∈[0,1] from
Eq. 5.

Diffusion-Driven Adversarial Purification. Similar
to [65], we employ a two-step adversarial purification
method. We begin with an adversarial example x′ = x(0) at



time t = 0 and remove its noise through a diffusion model.
The first step involves diffusing the input by solving a for-
ward SDE, as given in Eq. 5, which gradually adds noise
from t = 0 to t = t∗. Specifically, for a chosen diffusion
timestep t ∈ [0, 1], the diffused sample is obtained from
Eq. 8. Once the adversarial input has been sufficiently dif-
fused, we reverse the process by solving the reverse SDE
in Eq. 6 from t = t∗ to obtain a purified input x̂(0). This
purified input is subsequently passed to a standard classi-
fier for prediction. This is illustrated in Figure 3. Examples
of clean, pixel-attacked, diffused, and purified images are
shown in Figure 4.
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Figure 4. Example of purified images for a pixel attack on the
ResNet-50 model with t∗ = 0.15.

4. Experimental Setup
Below, we detail the dataset, training configuration, em-
ployed networks, and evaluation metrics, followed by the
presentation of results and analysis.

4.1. Configurations and Metrics
We aim to explore the effectiveness of adversarial purifi-
cation against perturbations in the spatial and spectral do-
mains across multiple pre-trained classifier architectures.
Specifically, we evaluate ResNet-50 [35] as a CNN, ViT-
B-16 [27] as a transformer model, and Swin-B [54] as a
hybrid architecture for a comprehensive evaluation on Ima-
geNet [23] dataset.

We minimize the loss in Eq. 4 using the Adam opti-
mizer [44] with a fixed learning rate of 5 × 10−3 and a
weight decay of 5 × 10−6. The optimization is performed
for a maximum of 1000 iterations, with a termination condi-
tion that halts the process if the loss does not improve over
five consecutive iterations. To control the attack strength,
we use the value of λ = 5 × 104, which is the default set-
ting employed by [43].

For diffusion purification, we follow the experimental
setup in [65]. Specifically, we use the adjoint framework
for SDEs provided by the TorchSDE library [42, 49] for

both adversarial purification and gradient evaluation. Both
SDEs are solved using the simple Euler-Maruyama method
with a fixed step size of dt = 10−3. Additionally, we use
the 256 × 256 unconditional diffusion checkpoint from the
Guided Diffusion library [66].

Evaluation metrics. We evaluate models using both
standard and robust accuracy. In Tables 3 and 4, ”Clean
(No Attack)” represents the performance of the pretrained
classifier on the entire test set of clean ImageNet data, with-
out any purification. Similarly, ”Adversarial” denotes the
performance of the model on adversarial examples gener-
ated from spectral and spatial attacks. The ”Purified Clean”
refers to the accuracy of the pretrained classifier on clean
test samples that have been processed through the diffusion
model for purification before classification. This metric al-
lows us to assess the impact of purification on clean accu-
racy and analyze the trade-off between improved robust-
ness and potential accuracy loss on unperturbed samples.
The ”Adversarial Purified” measures the classifier’s perfor-
mance on adversarial examples (from spectral and spatial
attacks) that are first processed through the diffusion model
for purification before classification. Following [65], ad-
versarial accuracies are evaluated on a fixed subsets of 512
randomly sampled images. Specifically, we use three sub-
sets, each containing 512 samples, and each experiment is
repeated three times. The results are reported as the mean
and standard deviation.

We also compare the trade-off between the clean ac-
curacy of the pre-trained model and the clean accuracy
achieved through adversarial training and diffusion purifica-
tion, evaluated on a fixed subset of 512 randomly sampled
images from the test set. The adversarially trained model
is chosen to be robust against AutoAttack (ε = 4/255,
ℓ∞) from RobustBench [21]. Specifically, for ResNet-
50 [35], we use the adversarially trained model from [69],
and for ViT-B-16 [27] and Swin-B [54] , we use the models
from [60]. For purification, the diffusion timestep is set to
t∗ = 0.15. Additionally, to evaluate the effect of diffusion
timestep, we consider t∗ = 0.1 and t∗ = 0.125.

5. Results
Figure 2 clearly illustrates that different models generate
distinct distortion patterns. Moreover, perturbing various
image components (pixel, phase, and amplitude) within the
same model also leads to differing distortion patterns (both
high and low frequency). To better understand how pu-
rification handles these diverse distortion patterns, Table 3
presents the performance of diffusion purification across
various adversarial perturbations applied to different net-
work architectures.

The pixel attack is most effective on the ResNet-50
model, and purification effectively restores the adversarial
sample, enhancing its robustness. Similarly, for spectral at-



tacks, diffusion purification is highly effective at removing
perturbations. On average, across both spatial and spectral
perturbations, the robustness improves by up to 7.72×102%
compared to the pre-trained model. In terms of clean accu-
racy, there is an average drop of 8.62% across all perturba-
tions compared to the pre-trained model, due to the clean
input passing through adversarial purification. This drop
is typically not reported in previous studies [65]; however,
in real-world scenarios, we do not know in advance which
samples are clean and which are adversarially crafted. Al-
though clean accuracy decreases, as shown in Table 1, pu-
rification still results in a smaller trade-off, and offering
better robustness compared to adversarial training. Simi-
larly, for the ViT and Swin-B models, adversarial perturba-
tions degrade performance in both spectral and spatial do-
mains, but purification results in significant benefits, even
more so than for the CNN model. In terms of robustness,
although there is a clean accuracy drop of 5.60% for ViT
and 6.79% for Swin-B on average across all perturbations
due to purifying clean samples, the robustness gain is as
high as 8.20× 103% for ViT and 7.73× 105% for Swin-B
compared to the pre-trained model after purification.

Table 1 presents the trade-off between the clean accuracy
of the pre-trained models and the clean accuracy achieved
through adversarial training [84, 94] and diffusion purifica-
tion. While both adversarial training and diffusion purifi-
cation reduce the clean accuracy of the pre-trained model
across all models, diffusion purification incurs less accuracy
loss and achieves superior robustness compared to adversar-
ial training [65].

Table 2 compares the performance of robust adversar-
ially trained models against unseen frequency perturba-
tions and purification. On average, across all perturbations,
the performance gain with purification is 66.49% for the
ResNet-50 model, compared to adversarial training, and
15.97% for the ViT model.

Table 4 compares the impact of diffusion timestep t∗.
For the ResNet-50 model, across all perturbations, a smaller
timestep t∗ = 0.1 results in better clean accuracy, while
larger diffusion timesteps enhance adversarial robustness.
In the case of the ViT-b model, the timestep has a relatively
minor effect, with similar performance observed across var-
ious timesteps t∗ = 0.1, t∗ = 0.125, and t∗ = 0.15 (as
shown in Table 3). For the Swin-b model, a smaller t∗

achieves better adversarial gains.

6. Conclusions
In this study, we employed the Diffusion model to evaluate
the effectiveness of purification in countering diverse ad-
versarial perturbations across both spectral and spatial do-
mains. Our findings consistently demonstrate the model’s
robustness across all tested scenarios, emphasizing that pu-
rification is highly effective in restoring robustness against

unseen and varied adversarial perturbations while incurring
minimal trade-offs.

Model
Clean

(Pre-trained)
Clean

(Robust)
Clean

(Purified)

ResNet-50
(Salman et al., 2020) [69] 75.78 63.86 70.89

ViT-B
(Mo et al., 2022) [60] 82.61 67.77 77.73

Swin-B
(Mo et al., 2022) [60] 84.76 74.8 81.05

Table 1. Clean accuracy trade-off between purification and ad-
versarially trained models on ImageNet under AutoAttack (ε =
4/255, ℓ∞). Adversarially trained models are sourced from Ro-
bustBench [21], while purification is applied with a diffusion
timestep of t∗ = 0.15. Clean (Pre-trained), Clean (Robust),
and Clean (Purified) refer to the clean accuracy of the pre-trained
model, adversarially trained model, and purified AutoAttack [21]
examples, respectively. Adversarial purification leads to smaller
reductions in clean accuracy while achieving greater improve-
ments in robustness (Tables 3 and 2 and [65]).

Accuracy

Adversarial Purified Adversarial
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0
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.,
20

20
)[

69
] Pixel 29.49 63.86

Mag 48.05 68.75
Phase 49.61 67.77
Phase+Mag 41.02 66.61
All 29.49 64.06

Mean 39.53 66.21

V
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-B
-1

6
(M
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al
.,

20
22

)[
60

] Pixel 63.28 74.02
Mag 65.42 76.37
Phase 66.01 75.19
Phase+Mag 63.67 73.44
All 63.08 73.82

Mean 64.29 74.56

Table 2. Comparison of the robustness of purification and ad-
versarially trained models against frequency-based perturbations.
Adversarial purification shows superior robustness in countering
frequency attacks.
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Accuracy

Clean (No Attack) Adversarial Purified Clean Purified Adversarial

R
es

N
et

-5
0

pixel 76.69±1.12 1.17±0.35 70.08±0.96 64.29±1.48

mag 76.69±1.12 12.96±1.62 70.08±0.96 67.06±1.23

phase 76.69±1.12 12.73±1.54 70.12±1.00 67.02±1.70

phase+mag 76.69±1.12 9.70±1.47 70.05±0.98 65.27±0.92

all 76.69±1.12 1.04±0.27 70.08±0.96 64.26±1.32

mean 76.69±1.04 7.52±5.57 70.08±0.90 65.58±1.79

V
iT

-B
-1

6

pixel 80.47±1.68 0.16±0.15 75.98±1.22 74.54±1.86

mag 80.47±1.68 1.89±0.34 75.98±1.22 74.71±1.69

phase 80.47±1.68 1.92±0.23 75.94±1.21 75.03±1.65

phase+mag 80.47±1.68 0.46±0.24 75.98±1.22 74.74±1.59

all 80.47±1.68 0.07±0.10 75.94±1.21 74.67±1.76

mean 80.47±1.56 0.90±0.87 75.96±1.13 74.74±1.60

Sw
in

-B

pixel 84.57±0.46 0.07±0.10 78.84±1.38 77.31±1.04

mag 84.57±0.46 0.00±0.00 78.81±1.36 77.34±0.95

phase 84.57±0.46 0.00±0.00 78.84±1.38 77.41±0.77

phase+mag 84.57±0.46 0.00±0.00 78.84±1.38 77.41±0.67

all 84.57±0.46 0.00±0.00 78.81±1.36 77.25±1.02

mean 84.57±0.43 0.01±0.05 78.83±1.28 77.34±0.84

Table 3. Performance of diffusion purification on various types of adversarial perturbations across different networks on ImageNet. ”Clean
(No Attack)” and ”Adversarial” denote classifier performance on clean and adversarial examples without purification. ”Purified Clean” and
”Adversarial Purified” assess accuracy on clean and adversarial samples after purification using diffusion timesteps t∗ = 0.15. Purification
enhances robustness across various perturbations and models, with notable improvements in both pixel and spectral attacks. While clean
accuracy drops slightly due to the purification process, robustness gains are substantial, particularly for ViT and Swin-B models.
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