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Abstract

Recent advances in image-to-image editing models offer
both benefits and risks. While they enhance creativity, ac-
cessibility, and applications in fields ranging from medicine
to environmental science, they can also enable misuse, such
as identity manipulation, copyright infringement, and deep-
fake creation. The dual nature of these technologies ne-
cessitates sophisticated defensive strategies that can proac-
tively mitigate emerging risks. Image immunization tech-
niques have emerged as a promising solution for address-
ing these challenges, employing adversarial perturbation
strategies to disrupt potential malicious model capabilities.
This research advances the state of the art by introducing
novel methods to universalize immunization approaches,
extending protective mechanisms beyond single-image sce-
narios to create more comprehensive and robust defense
strategies against unauthorized image transformations and
achieve true immunization.

1. Introduction
Generative AI technologies, particularly diffusion-based
image generation systems, have revolutionized digital con-
tent creation by demonstrating unprecedented capabilities
in image manipulation and synthesis. These technologies
present a complex technological landscape characterized by
extraordinary creative potential and significant ethical chal-
lenges, including risks of identity manipulation, unautho-
rized content generation, and sophisticated deepfake cre-
ation.

As AI image editing technologies become increasingly
sophisticated, the imperative for robust defensive mech-
anisms has never been more critical. Image immuniza-
tion [13] techniques have emerged as a promising strategic
approach to mitigate these risks, leveraging adversarial per-
turbation strategies designed to disrupt AI model capabili-
ties. Figure 1 shows how immunization is achieved by in-
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troducing imperceptible noise into images, rendering them
resilient against unintended or malicious transformations by
disrupting the process of editing using generative models
while preserving their fundamental visual integrity.

The existing landscape of immunization strategies can
be comprehensively categorized into encoder-based and
decoder-based approaches, depending on what part of the
model, the noise disrupts. Photoguard[13] introduced dual
strategies, including an encoder attacks that manipulate la-
tent representations and diffusion attacks targeting entire
image generation pipelines. Complementary research, like
Posterior Collapse Attacks (PCA) [4], explored critical vul-
nerabilities in variational autoencoders by strategically ma-
nipulating latent distributions to trigger posterior collapse.
Decoder Attacks such as AdvDM and Score Distillation
Sampling (SDS) [9, 15] have further refined gradient com-
putation for a semantic loss, enabling more efficient noise
generation for decoder attacks. We will focus on encoder-
based attack methodologies in this paper.

Despite these significant advancements, existing ap-
proaches predominantly focus on single-image scenarios,
representing a substantial limitation in practical immu-
nization strategies. Under limited computational budgets,
single-image attacks may not fully explore every model vul-
nerability. Multi-image methods, on the other hand, ac-
cumulate gradients from a variety of images, creating a
more robust search direction and preventing overfitting to
a single sample. This research introduces Multi and UAP
Attack, novel universal adversarial perturbation methods
which find a universal noise for any image to explicitly ad-
dress key constraints in contemporary image immunization
techniques.

Our primary contributions are twofold, proposing a
framework to develop and evaluate multi-image immuniza-
tion methods and proposing two novel attacks for generat-
ing universal noise patterns with demonstrated effectiveness
across multiple images. We present a comprehensive solu-
tion to the complex challenges posed by AI-powered image
manipulation technologies.



Figure 1. The figure shows how immunization is achieved across multiple images. We use an adversarial attack to iteratively find a
universal perturbation δencoder , which is then used to produce a corrupt latent representation for an unseen image. The below pipeline
shows the corresponding output for the original unseen image for comparison.

2. Background
2.1. Diffusion Models
Diffusion models are a class of probabilistic generative
models that approximate a data distribution p(x) by pro-
gressively denoising a normally distributed variable. These
models define a Markov chain of diffusion steps to slowly
add random noise to a sample from the empirical data dis-
tribution q(x). The objective is to learn the reverse process
that reconstructs desired samples from the target distribu-
tion p(x) given a noisy input.

2.1.1. Forward Diffusion Process
Given a data point x0 sampled from the data distribu-
tion, the forward diffusion process introduces Gaussian
noise over T steps, generating progressively noisier sam-
ples x1, x2, . . . , xT . The transition from one step to the next
follows a Gaussian distribution:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI)

where the step sizes βt determine the amount of noise
added at each step, controlled by a variance schedule.

2.1.2. Reverse Diffusion Process
Given the final noisy sample xT , the reverse diffusion pro-
cess aims to recover the original data by learning to sam-
ple from q(xt−1|xt, x0). We learn to model pθ(xt−1|xt)
to approximate this conditional distribution using a normal
distribution:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

Ho et al. [6] discovered that learning the variance
Σθ(xt, t) leads to instability during training and degraded
sample quality. Instead, they proposed fixing the variance
and training a network ϵθ to predict the noise ϵt added at
each step. . Consequently, this denoising model ϵθ is trained
to minimize the following loss function:

Lsimple
t = Et∼[1,T ],x0,ϵt

[
∥ϵ− ϵθ(xt+1, t)∥2

]
2.1.3. Latent Diffusion Models
Our focus will be on a specific class of diffusion mod-
els called the latent diffusion models (LDMs) [12]. These



models improve computational efficiency and image qual-
ity at high resolutions by applying the diffusion process in a
lower-dimensional latent space instead of the original pixel
space. This approach retains the semantic and structural in-
formation of the image while reducing the number of neces-
sary computations, since most bits only contain information
about perceptual details.

LDM uses an encoder network E to map the original in-
put image x0 to its latent representation z0 = E(x0). The
resulting noisy latent z̃ is then passed through a decoder
network D to reconstruct the final output image x̃.

2.2. Variational Autoencoder
Variational Autoencoders (VAEs) [8] are a class of la-
tent variable models that employ a probabilistic encoder-
decoder framework. The encoder transforms input data x
into a latent representation z that follows a prior distribu-
tion pθ(z), typically modeled as a Gaussian:

qϕ(z | x) ∼ N (µ, diag(σ2))

Training is performed by minimizing the Kullback-
Leibler (KL) divergence between the approximate posterior
qϕ(z | x) and the true posterior pθ(z | x). This is achieved
using the following loss function:

L(x) = −Eqϕ(z|x) [log pθ(x | z)] +DKL
(
qϕ(z | x) ∥ p(z)

)
This objective consists of two terms: a reconstruction

loss that encourages the decoder to accurately reconstruct
x from z, and a regularization term that ensures the latent
distribution remains close to the prior.

2.3. Adversarial attacks
In computer vision, adversarial examples are small, often
imperceptible modifications to an image that cause a model
to misclassify it with high confidence [3]. A targeted ad-
versarial attack aims to find a perturbation δadv for a given
datapoint x that causes the model fθ to produce a specific
incorrect target ytarg. This noise is found by minimizing
the following optimization problem:

δadv = argmin
δ∈∆

L(fθ(x+ δ), ytarg)

where ∆ is the set of allowable perturbations constrained
by an Lp norm to ensure visual imperceptibility, ∆ =
{δ : ∥δ∥p ≤ ϵ}. One common approach to solve this
optimization problem is to use projected gradient descent
(PGD) [11].

2.4. Photoguard
Photoguard [13] introduces two distinct methods to immu-
nize images against adversarial manipulation, encoder and
diffusion attack. We will mainly focus on their encoder at-
tack in this paper.

2.4.1. Encoder Attack
The Encoder Attack focuses on perturbing the latent rep-
resentation of an image within a Variational Autoencoder
(VAE). By introducing carefully crafted noise into the input
image, the attack maps the image to an altered latent space
representation that disrupts downstream tasks, resulting in a
perceptually distorted output upon image editing.

The researchers employed a straightforward optimiza-
tion strategy to align the latent space embedding with the
target latent representation of a grey image using Projected
Gradient Descent. Let δencoder denote the perturbation
added to the original image, it can be formulated as:

δencoder = arg min
∥δ∥∞≤ϵ

Lpg = ∥E(x+ δ)− ztarg∥22

2.5. Posterior Collapse Attack
Due to the dominance of the KL divergence term in the
learning objective, VAE training usually suffers from an
optimization issue called posterior collapse [14], a phe-
nomenon in which latent variables fail to encode meaning-
ful information, causing the model to ignore them. This
leads to the output of decoder x̃ becoming almost indepen-
dent of z, essentially leading to the collapse of the posterior
qϕ(z∥x) to the prior pθ(z).

2.5.1. Attack
Instead of optimizing the latent space towards a grey image
as done by Photoguard, PCA [4] tried to leverage this phe-
nomenon and generate a specific noise which will forcefully
collapse the resulting latent distribution, thus, distorting the
outputs from the decoder.

This paper proposed two methods two attack the image
both of which essentially use the same loss function, formu-
lated as follows:

Lpca(x) = DKL (q(z|x) ∥ p∗(z))

=
1

2

d∑
i=1

(
σ2
i + µ2

i

v
− 1 + ln

v

σ2
i

)
where p∗(z) ∼ N (0, v), and v controls the disruptive ef-

fect of the attack. The authors proposed two different attack
strategies:
1. PCA+ Attack: Maximizes Lpca(x + δ), pushing the la-

tent distribution away from the prior N (0, v), leading to
an out-of-distribution scenario that disrupts latent rep-
resentations and downstream tasks. This optimization
forces both mean µ2

i and variance σ2
i towards extreme

values, breaking the learned encoding.
2. PCA- Attack: Minimizes Lpca(x + δ), bringing the la-

tent distribution closer to a near-zero Gaussian N (0, 0).
This collapses the latent representation to a Dirac distri-
bution by driving both σ2

i and µ2
i to zero, reducing the



information encoded in z and distorting the generative
process.

3. Methodology
The objective of this work is to generate a single universal
perturbation vector δ ∈ Rd that, when added to any natural
image x ∈ X ⊂ Rd, results in a corrupted latent represen-
tations by a pre-trained encoder E : Rd → Rk. The pertur-
bation δ must lie within a bounded ℓp norm-ball ∥δ∥p ≤ ϵ,
ensuring imperceptibility while minimizing a latent-space
loss function L designed to degrade encoder outputs to give
incorrect representations of the input image. Figure 1 shows
how immunization is achieved for an multi-image setting.
We define the universal optimization objective as follows:

δ∗ = arg min
∥δ∥p≤ϵ

Ex∼X [L(E(x+ δ))] , (1)

where L may be instantiated as either a latent deviation
(Photoguard Loss) or a KL-divergence loss (PCA Loss).
In this section, we present two algorithmic strategies to
approximate δ∗: (i) a greedy per-sample update approach
(UAP), and (ii) a batched optimization method (Extended
Multi-Image Attack).

Algorithm 1 Universal Adversarial Perturbation (UAP)

1: Input: Dataset {xi}Ni=1, encoder E , inner adversar-
ial attack function A(·), loss function L (e.g., Lpg or
Lpca), maximum iterations Tmax, perturbation bound ϵ,
learning rate η, attack function A(·) (e.g., Adam, PGD,
AutoPGD)

2: Initialize universal perturbation: δ ← 0
3: for t = 1 to Tmax do
4: Randomly shuffle the dataset indices
5: for each image xi in the shuffled dataset do
6: Compute latent loss: L(E(xi + δ))
7: Compute image-specific perturbation:

δi ← A
(
δ,∇δL(E(xi + δ)), η, ϵ)

8: if
∑j=N

j=1 L(xj + δi) <
∑j=N

j=1 L(xj + δ) then
9: Update δ ← δi

10: end if
11: end for
12: end for
13: return δ

3.1. Universal Adversarial Perturbation (UAP)
The UAP-based [5] approach is a sequential method in-
spired by classical universal adversarial perturbation tech-
niques. Let X = {xi}Ni=1 denote the dataset. We define the
universal perturbation δ and aim to iteratively refine it by

Algorithm 2 Extended Multi-Image Adversarial Attack
(Generalized)

1: Input: Batch of images {xi}Ni=1, encoder E , perturba-
tion bound ϵ, learning rate η, maximum iterations T ,
attack function A(·), loss function L(·)

2: Initialize universal perturbation δ as a trainable param-
eter sampled uniformly from [−ϵ, ϵ]

3: for t = 1 to T do
4: Perturb the images: xadv

i = xi + δ for all i
5: Compute latent representations: µi = µ

(
E(xadv

i )
)

6: Calculate the average loss:

L(δ) =
1

N

N∑
i=1

L
(
µi

)
7: Update δ using the chosen attack method:

δ ← A
(
δ,∇δL(δ), η, ϵ)

8: end for
9: return δ

visiting each image xi in a randomized order, computing its
latent loss L(E(xi + δ)) and performing a gradient-based
adversarial attack, which proposes a new perturbation can-
didate δi.

Let A(δ,∇δL, η, ϵ) denote a gradient-based attack func-
tion such as PGD or AutoPGD [1] which returns an updated
perturbation vector. At each iteration, the algorithm checks
whether the updated perturbation improves the cumulative
loss across the dataset:

N∑
j=1

L(E(xj + δi)) <

N∑
j=1

L(E(xj + δ)). (2)

If this condition holds, δ is updated to δi. This process is
repeated for a maximum of Tmax iterations, producing a uni-
versal perturbation that generalizes well across samples by
greedily optimizing per-image performance using a sample-
specific perturbation update.

The strength of this approach lies in its sample-wise up-
dates, which provide targeted latent-space degradation and
ensure that each image in the dataset contributes to the ro-
bustness of the final universal perturbation.

3.2. Extended Multi-Image Adversarial Attack
While the UAP strategy incrementally updates δ per sam-
ple, the Extended Multi-Image Adversarial Attack treats δ
as a trainable parameter, enabling more efficient optimiza-
tion via batch gradient descent. This method computes the
latent representations of a full batch of perturbed images
and directly minimizes the average latent loss across the



batch.
Let {xi}Ni=1 denote a mini-batch, and let xadv

i = xi +
δ denote the perturbed inputs. The latent embeddings are
computed as µi = E(xadv

i ). The optimization objective is as
follows:

L(δ) = 1

N

N∑
i=1

L(µi), (3)

The perturbation δ is initialized uniformly from [−ϵ, ϵ]
and is updated using an optimizer A. This enables flexi-
ble, differentiable learning of a universal perturbation that
generalizes well across input distributions.

This method offers improved scalability, faster conver-
gence, and the ability to incorporate richer loss formulations
due to the batched and differentiable nature of its optimiza-
tion routine.

For both the above attacks, we explore various combina-
tions of loss functions L and adversarial attacks A.

The loss L can be instantiated as:
• Lpg(µi) = ∥µi − µref∥22, targeting deviation from a refer-

ence latent embedding,
• Lpca =

∑d
i=1

(
σ2
i+µ2

i

v

)
, as the KL-divergence between

posterior and a collapsed prior.
Additionally, for adversarial attacks A, we explore Pro-

jected Gradient Descent (PGD) [11], AutoPGD [1] and an
Adam-based attack which leverages the gradient’s magni-
tude instead of its sign along with the Adam optimizer [7].

4. Experimental Setup

We extend the experimental setup in PCA [4] to evaluate
both the multi and single image attacks.

Dataset: We utilize a 1000-image subset of the Ima-
geNet [2], curated following the protocol established by Lin
et al. [10], which is widely adopted in adversarial attack re-
search. All images are resized to a resolution of 512×512 to
maintain consistency across editing pipelines. This dataset
is divided into a train:test split of 128:872. The 128 im-
ages are used to compute the universal perturbation δ for
our methods, and the resulting noise is then evaluated on
the remaining unseen test set images. For baseline single
image attacks, adversarial perturbations are calculated in-
dependently for each test image.

Models: We primarily evaluate our attack against Stable
Diffusion v1.5 (SD15), due to its open-source availability
and its widespread use in real-world image generation and
editing applications.

Prompts: To assess the robustness of our perturbation
under a variety of editing conditions, we evaluate on a
diverse set of natural language prompts commonly used

in LDM-based editing tasks: (P1) ”Make it like a water-
color painting” (style transfer), (P2) ”Apply sunset light-
ing” (lighting adjustment), (P3) ”Add some snow” (weather
modification), and (P4) an empty prompt (null-edit). This
prompt variety allows us to evaluate performance across a
range of semantically meaningful transformations.

Metrics: To quantitatively evaluate the effect of our at-
tack, we employ four widely used Image Quality Assess-
ment (IQA) metrics: Peak Signal-to-Noise Ratio (PSNR),
which measures pixel-level distortion; Feature Similarity
Index (FSIM), which captures low-level structural similar-
ities using phase congruency and gradient features; Struc-
tural Similarity Index Measure (SSIM), which assesses per-
ceptual distortion by comparing luminance, contrast, and
structure; and Visual Information Fidelity (VIFp), a percep-
tual image quality metric that measures the loss of human-
aligned visual information between a reference and dis-
torted image. For all four metrics, higher values indicate
better image similarity to the reference.

Methods: We compare our method against two recent
state-of-the-art image protection techniques: PhotoGuard
(PG) [13] and Posterior Collapse Attack (PCA) [4]. For
both PG and PCA, we standardize key hyperparameters,
including number of attack steps (T = 40), perturbation
bound (ϵ = 16), and optimization routines. We imple-
mented both PGD and Adam as attack functions A, but ta-
ble 1 shows only the Adam variant in the first 3 columns.
This ensures uniform comparison of these single-image at-
tacks with our multi-image attacks. For our methods, we
adjust the number of attack steps due to the difference in
training and inference processes. Since our method does not
require adversarial perturbation generation during test time,
unlike the baseline single image attacks, we fix the number
of attack steps to T = 1000 for the Extended Multi-Image
Attack across the 128 image training set and for UAP, we
set the number of outer-loop iterations to 5, and the number
of inner-loop Attacking steps per image to 8. For extended
multi image, we used Adam as the optimizer and 3 variants
of the optimization objective function, namely PCA+/PCA-
/Photoguard. For UAP, we utilized 2 attacks, AutoPGD
with the Photoguard objective and PGD with PCA- objec-
tive.

5. Results
Our evaluation compares the Universal Adversarial Pertur-
bation (UAP) and Extended Multi-Image Adversarial At-
tack approaches using four editing prompts—(P1) ”Make
it like a watercolor painting” (style transfer), (P2) ”Ap-
ply sunset lighting” (lighting adjustment), (P3) ”Add some
snow” (weather modification), and (P4) an empty prompt
(null-edit). For each prompt, we measure image quality us-
ing SSIM, PSNR, FSIM, and VIFp. Overall, lower SSIM,
PSNR, FSIM, and VIFp values indicate stronger degrada-



Prompt Metric PCA- adam PCA+ adam PG adam Multi PCA+ Multi PCA- Multi PG UAP PCA- UAP autopgd

P1 SSIM↑ 0.6824 0.7027 0.6800 0.5758 0.5524 0.5986 0.5690 0.5755
P1 PSNR↑ 21.32 22.62 21.25 20.64 17.72 19.56 19.76 18.56
P1 VIFp↑ 0.1845 0.2098 0.1825 0.1343 0.1171 0.1273 0.1276 0.1257
P1 FSIM↑ 0.8075 0.8353 0.8059 0.7859 0.7353 0.7700 0.7634 0.7496

P2 SSIM↑ 0.4087 0.4092 0.4085 0.3560 0.3477 0.3603 0.3220 0.3382
P2 PSNR↑ 17.30 17.58 17.28 17.11 16.18 16.67 16.59 16.34
P2 VIFp↑ 0.0532 0.0602 0.0530 0.0444 0.0310 0.0365 0.0370 0.0333
P2 FSIM↑ 0.6864 0.7061 0.6863 0.6833 0.6614 0.6764 0.6761 0.6669

P3 SSIM↑ 0.3042 0.3250 0.3030 0.3003 0.2289 0.2421 0.2361 0.2351
P3 PSNR↑ 15.85 16.37 15.83 16.17 14.57 15.00 15.16 14.76
P3 VIFp↑ 0.0371 0.0443 0.0368 0.0367 0.0217 0.0260 0.0277 0.0241
P3 FSIM↑ 0.6467 0.6692 0.6463 0.6609 0.6122 0.6229 0.6286 0.6150

P4 SSIM↑ 0.3199 0.3500 0.3196 0.2977 0.2132 0.2504 0.2352 0.2212
P4 PSNR↑ 16.82 17.35 16.80 16.88 15.13 15.94 15.90 15.38
P4 VIFp↑ 0.0395 0.0497 0.0391 0.0380 0.0192 0.0269 0.0286 0.0225
P4 FSIM↑ 0.6777 0.7016 0.6773 0.6780 0.6253 0.6496 0.6485 0.6297

Table 1. Comparison of single and multi-image methods against several baselines on the test set. Arrows (↑/↓) indicate whether higher
or lower values represent better image quality for each image quality metric. The best result for each prompt and each metric has been
highlighted in bold in each row and second best has been underlined. Here, PG denotes Photoguard, PCA+/PCA-/PG denote the base
optimization problem, pgd/autopgd/adam denote the method for solving the optimization problem and for UAP autopgd, Lpg has been
used. The results have been evaluated on 4x NVIDIA Tesla V100 16GB GPUs.

tion of the intended edits.

In our experiments, the multi-image methods consis-
tently achieve lower metric scores compared to single-
image (per-sample) approaches. For example, under the
null edit condition (P4), the multi-image variants reduce
SSIM and PSNR more dramatically than the single-image
attacks, indicating that the latent representations are signif-
icantly more disrupted. Similar trends are observed for the
weather, lighting, and style prompts. For most of the cases
the Multi PCA- attack performs the best and UAP autopgd
attack performs the second best in almost all of the metrics.

Across all four subplots in Figure 2, we observe a consis-
tent trend: as the number of samples increases, the perfor-
mance of both attack variants stabilizes, with Multi Image
PCA- achieving consistently lower metric scores, indicat-
ing stronger image disruption and better immunization. No-
tably, even small training sets (e.g., 16–32 images) are suf-
ficient to significantly degrade model outputs, showcasing
the efficiency of universal attack formulations. The perfor-
mance gains saturate after around 64–128 training images,
suggesting that a relatively small subset of data is suffi-
cient to capture shared vulnerabilities in the encoder’s latent
space. Figure 3 shows a qualitative example that demon-
strates the effectiveness of our multi-image attacks.

Figure 2. Effect of Training Set Size on Multi-Image Attack Ef-
fectiveness. This figure illustrates how increasing the number of
training images used to compute a universal perturbation affects
the quality degradation metrics (SSIM, PSNR, VIFp, FSIM) on
unseen test images for two multi-image attack strategies: Multi
PG and Multi Image PCA-.

6. Reconciling Single-Image vs. Multi-Image
Attack Performance

Intuitive Expectation: From a purely conceptual stand-
point, one might anticipate that a single-image attack would



yield the strongest distortion for that one image. By focus-
ing optimization solely on a particular sample, the perturba-
tion can “overfit” to fine nuanced latent-space features for
a specific image, thereby achieving maximum local disrup-
tion.

• Local Optimality: Single-image attacks can converge to
potent local minima specialized for that image, capturing
its unique latents and idiosyncrasies.

• Precision Tuning: The noise can, in principle, be fine-
tuned to exactly degrade the final edited output without
“wasting” capacity on other images.

Why Multi-Image Attacks can Outperform Single-
Image Attacks: Despite this intuition, empirical evidence
in table 1 consistently shows that training on multiple im-
ages usually finds a single perturbation that also degrades
each individual image more severely than a per-image ap-
proach and works for unseen images as well. Several factors
explain this phenomenon:

1. Deeper Latent-Space Vulnerabilities: By seeing mul-
tiple images, the optimizer is exposed to gradients that
reflect common weaknesses in the encoder or diffusion
model. Rather than exploiting idiosyncratic properties of
a single latent embedding, the multi-image approach ze-
ros in on fundamental representational shortcuts or fail-
ure modes shared across different images that exploit
model vulnerability better. Ironically, these universal di-
rections often also harm any particular image in train set
more severely than a local, single-image optimum.

2. Escaping Local Minima: A single-image attack may
converge to a local optimum that strongly disrupts edit-
ing for that image, but not necessarily the worst possible
outcome universal outcome for the model. When multi-
ple images are involved, the combined objective forces
the attack out of narrow minima that only apply to one
specific latent configuration, steering it instead toward
global minima in the latent space that degrade editing in
a broader, more devastating way.

In short, while a single-image attack may indeed specialize
to that specific image, multi-image attacks tap into the more
generalizable, systemic weaknesses of the diffusion model,
thereby yielding perturbations that incidentally disrupt in-
dividual images even more severely.

7. Conclusion

In this work, we present a novel universal adversarial per-
turbation framework for robust image immunization against
diffusion-based image editing models. By formulating
multi-image encoder perturbations through both greedy
(UAP) and batched (Extended Multi-Image) optimization
strategies, we demonstrate that a single, imperceptible noise
pattern can generalize across diverse images and editing

prompts, effectively degrading the semantic editing capa-
bilities of state-of-the-art generative models.

Our results reveal that multi-image attacks not only scale
efficiently, but often surpass per-image approaches in dis-
rupting the generative process, even on unseen test images.
This suggests that shared vulnerabilities in latent represen-
tations can be exploited more effectively through collec-
tive optimization, rather than isolated per-sample tuning.
Among all tested configurations, the Multi PCA- attack
consistently exhibited the strongest degradation across both
quantitative metrics and qualitative results, highlighting the
promise of targeting model vulnerabilities such as posterior
collapse directly.

Ultimately, UAP and Extended Multi-Image attacks
marks a step toward scalable, content-preserving defenses
against unauthorized generative manipulations, and lays
the groundwork for future research in adaptive immuniza-
tion, cross-architecture generalization, and alignment with
downstream safety protocols.
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that the perturbation significantly disrupts the model’s ability to apply intended semantic edits.
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