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Abstract

We present a framework for black-box adversarial attacks
on traffic signs using dynamic, temporally coherent shad-
ows. Unlike prior work that focuses on single-image attacks
or relies on conspicuous physical artifacts, our method op-
erates over entire image sequences, mimicking realistic sce-
narios where a traffic sign is observed from varying dis-
tances. We design a non-differentiable shadow generator
that casts a single fixed-shape, fixed-opacity shadow whose
spatial scale evolves over time to simulate natural environ-
mental shading. A genetic algorithm is used to optimize
shadow geometry and opacity, guided by a dual loss that
jointly maximizes classification error and visual attention
disruption. Attention perturbation is measured using DINO
ViT attention maps between clean and shadowed frames.
Evaluated on the GTSRB dataset, our method achieves a
sequence-level attack success rate (SL-ASR) — defined as
the percentage of sequences where at least τ out of T frames
are misclassified — ranging from 52.3% to 87.5%, depend-
ing on the threshold and shadow type. Furthermore, in-
corporating attention supervision yields consistent SL-ASR
gains of 11–18% over purely classification-based attacks. 1

1. Introduction
In recent years, deep neural networks (DNNs) have
achieved remarkable success across a range of computer vi-
sion applications — from image classification and object
detection to scene segmentation [26, 28, 36, 44]. Despite
these advances, studies have found that DNN-based models
are surprisingly susceptible to adversarial examples, even
when the added perturbations appear negligible in magni-
tude [10, 42]. Such vulnerabilities pose a significant con-
cern in safety-critical scenarios, particularly in autonomous
vehicles (AVs) which depend on automated driving systems
(ADS), comprising perception, planning, and control mod-

*The first two authors contributed equally.
1The implementation code of this work is available at https://

github.com/pedram-mohajer/ShadowSeq.

Figure 1. A sequence of adversarial images illustrating our core
idea: a single shadow pattern (same shape and opacity) is progres-
sively scaled and applied across time to a traffic sign sequence.
Although the original class is 36 (go straight), the shadow causes
the classifier to consistently predict class 40 (turn right), revealing
the power of subtle, temporally evolving occlusions in sequential
settings.

ules [31, 37]. Within the perception module, DNN models,
which are responsible for tasks such as image classification
and object detection [8, 33, 35], provide crucial information
for navigation and maneuvering. Ensuring the trustworthi-
ness of these DNNs is therefore essential, since even minor
errors in recognition can propagate through the pipeline and
undermine overall safety [19].

Physical-world adversarial attacks have garnered grow-
ing attention, particularly due to their potential for realis-
tic yet disruptive modifications. Traditional attempts often
rely on conspicuous stickers or camouflage patterns [5, 11],
which — despite their effectiveness — are overt and less
feasible for stealthy manipulation. To overcome these draw-
backs, recent studies have investigated light-based perturba-
tions as a more subtle means of deceiving vision models.

For instance, Zhong et al. [43] demonstrated that even
naturally occurring shadows can severely mislead traffic
sign classification, achieving high attack success rates in
simulations and real-world tests. Wang et al. [40] further
explored this concept through the Reflected Light Adversar-
ial Attack (RFLA), using mirrors and colored filters to pro-
duce adversarial perturbations under direct sunlight. Simi-



larly, Li et al. [23] introduced AdvSL, which leverages spot-
lights to enable both stealthy and adaptable physical-world
attacks, while Hsiao et al. [18] underscored the danger of
natural light interference, revealing how subtle illumination
changes can undermine traffic sign recognition models.

Building upon these insights, we propose an adversarial
framework that introduces shadow perturbations to disrupt
both the classification accuracy and spatial attention of deep
models on traffic sign recognition tasks. Unlike prior work
that focuses on static single-image attacks, our method tar-
gets entire image sequences, simulating how a vehicle per-
ceives a sign at varying distances and perspectives. We de-
sign a parametric shadow generator that overlays polygo-
nal or triangular shadows across each frame, dynamically
scaled over time to mimic consistent environmental shad-
ing. Figure 1 illustrates how applying the same shadow
pattern across an image sequence consistently induces mis-
classification. These shadows are visually plausible, local-
ized within the region of interest, and temporally coherent,
making them ideal candidates for stealthy physical-world
attacks.

A key novelty of our framework lies in its integration
of DINO-based Vision Transformer (ViT) [6] attention su-
pervision as a second-order optimization objective. Rather
than relying solely on classification misdirection, we explic-
itly seek to disrupt the model’s internal visual reasoning.
DINO’s self-attention maps provide a spatial distribution of
the regions the model deems most important for recognition
— with lighter areas indicating stronger focus. By com-
paring the attention maps of shadowed inputs against class-
specific reference maps derived from clean exemplars, we
encourage the adversarial shadow to significantly alter the
model’s perceptual focus. This enforces a form of inter-
pretable misdirection: the attack not only fools the clas-
sifier but also causes attention to drift away from the true
semantic core of the image. The result is a physically plau-
sible perturbation that compromises both accuracy and in-
terpretability, exposing deeper vulnerabilities in attention-
based vision systems.

To efficiently explore the shadow parameter space, we
employ a Genetic Algorithm (GA) [16] that evolves candi-
date solutions based on a joint loss function. Each individ-
ual in the population encodes a unique shadow configura-
tion (control points and opacity), which is applied across the
image sequence using temporal scaling. The GA iteratively
selects and refines candidates through crossover and muta-
tion, guided by feedback from both the Convolutional Neu-
ral Network (CNN) classifier and the DINO attention ex-
tractor. Our experiments on the German Traffic Sign Recog-
nition Benchmark (GTSRB) dataset [17] demonstrate that
this sequence-level attack strategy reliably causes persistent
misclassification across frames.

This paper makes the following contributions:

• We propose the first adversarial shadow attack that oper-
ates over full image sequences, simulating real-world sce-
narios where a traffic sign is captured from varying dis-
tances. Our attack applies a single shadow pattern consis-
tently across frames, with moderate spatial adjustments to
reflect natural changes in shadow appearance over time.
This temporal coherence contributes to physical plausibil-
ity while maintaining attack effectiveness across varying
viewpoints.

• We introduce a novel multi-objective loss that jointly de-
grades classification accuracy and disrupts visual inter-
pretability. By leveraging DINO’s class-conditioned at-
tention maps, our attack explicitly misaligns the model’s
internal focus, guiding perturbations to be both effective
and explainable.

• We introduce a new evaluation metric — Sequence-Level
Attack Success Rate (SL-ASR) — which defines an at-
tack as successful only if it causes misclassification in at
least τ out of T frames. This metric captures the per-
sistence and temporal robustness of adversarial effects in
sequential settings like autonomous driving. Using SL-
ASR, we demonstrate that our attention-guided attack sig-
nificantly improves both effectiveness and stealthiness,
supported by quantitative and qualitative results on the
GTSRB dataset.

2. Related Work
DNNs are widely used in AVs for tasks such as traffic sign
recognition and scene understanding [27, 32]. This makes
their vulnerability to physical adversarial attacks a critical
safety concern [9, 22]. One prominent line of research fo-
cuses on real-world attacks that physically alter the visual
scene to mislead perception models. Eykholt et al. [11]
showed that printed adversarial patches and stickers can
fool traffic sign classifiers under varied conditions. How-
ever, these attacks are often static and visually conspicuous,
limiting their stealth and practicality.

To improve realism, later efforts turned to optical phe-
nomena. Light- and shadow-based attacks manipulate per-
ception by projecting patterns or simulating natural occlu-
sions without altering the object itself. For example, Wang
et al.[39] used mirrors and colored filters to generate adver-
sarial reflections, while Zhong et al.[43] showed that physi-
cally plausible triangular shadows could mislead classifiers.
Despite their effectiveness, such methods typically focus
on single-frame inputs, lack temporal consistency, and of-
ten rely on handcrafted patterns or heuristic search, limiting
generalizability to dynamic scenarios.

Research has shown that even when predictions remain
unchanged, adversarial examples can significantly distort
interpretability outputs. Tao et al.[38] found that saliency
maps could become misaligned with meaningful image re-
gions. Gu et al.[14] reported that ViTs under attack may ex-
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Figure 2. Overview of our proposed adversarial shadow attack framework for traffic sign recognition in sequential visual settings. Given a
clean input sequence, the framework uses a scGA to search for optimal shadow parameters—comprising a single shape and opacity—that
are temporally scaled across frames to simulate the consistent growth of a physical shadow over time. Each candidate is evaluated by
rendering shadows over the sequence, passing the images through a CNN classifier and a DINO-based attention extractor, and computing
a joint classification-attention loss. The GA iteratively evolves the population until an adversarial configuration is found that causes
misclassification in at least τ out of T frames, ensuring both persistence and stealthiness of the perturbation.

perience attention collapse or spread, often focusing on ir-
relevant background regions. While these effects raise con-
cerns about explanation reliability, they are usually byprod-
ucts of misclassification-focused attacks.

Only a few works explicitly target interpretability mech-
anisms. For example, Fong et al.[13] and Rasuly et al.[34]
explored attacks on attention maps and Grad-CAM outputs.
However, such approaches generally assume white-box ac-
cess to gradients and are typically applied to single-image
scenarios, neglecting temporal aspects in sequential vision
tasks.

Most adversarial research focuses on static images, over-
looking the temporal dimension central to video and real-
time systems. Hsiao et al. [18] introduced natural light-
ing variations across video frames to test model robust-
ness under dynamic illumination using zeroth-order opti-
mization. While this work incorporates time-awareness, it
does not address structured, physically plausible perturba-
tions—such as cast shadows—or their effects on attention
mechanisms in sequential tasks.

Many adversarial attacks assume access to model gra-
dients, which is unrealistic in deployed systems. This

has led to the development of black-box approaches that
rely only on model outputs. Zeroth-Order Optimiza-
tion (ZOO)[7], Natural Evolution Strategies (NES)[20],
and Bandits-TD [21] estimate gradients through repeated
queries, though they often incur high sample costs. Ge-
netic Algorithms (GAs) offer a fully gradient-free alter-
native by evolving perturbations using selection, mutation,
and crossover. Alzantot et al.[3] demonstrated their effec-
tiveness in both NLP and vision, and follow-up works[4, 24]
extended them to more efficient vision attacks. However,
most of these approaches focus on unstructured, pixel-level
perturbations, with limited attention to structured or physi-
cally grounded changes.

Various defense mechanisms have been proposed to
counter adversarial vulnerabilities. One common strategy
is adversarial training, where models are trained on both
clean and adversarial examples to improve robustness, as
demonstrated by Madry et al. [25]. Another approach,
defensive distillation, introduced by Papernot et al. [30],
reduces model sensitivity by smoothing decision bound-
aries. Robust optimization methods, such as those pre-
sented by Wong and Kolter [41], aim to strengthen models



through formal optimization techniques. Additionally, in-
put preprocessing techniques, like those explored by Guo et
al. [15], apply transformations such as denoising to dimin-
ish the impact of adversarial perturbations. More recently,
Aldeen et al. [1, 2] and Fernandez et al. [12] investigated
the use of Large Language Models (LLMs) and Large Mul-
timodal Models (LMMs) to enhance the cybersecurity of
autonomous vehicles, highlighting emerging directions be-
yond traditional defense methods. Complementary sensors
such as LiDAR can augment and provide additional context
for visual anomalies, improving robustness [29].

3. Methodology

This section details the training and adversarial attack
pipeline of our proposed framework, which leverages
shadow-based perturbations to degrade both classification
accuracy and attention reliability in traffic sign recognition
models. Our approach integrates four key components: (1)
the GTSRB dataset structured into temporal sequences, (2)
a CNN for traffic sign classification, (3) a ViT attention ex-
tractor trained with the DINO framework, and (4) a genetic
algorithm for optimizing shadow parameters. An overview
is provided in Figure 2.

3.1. Dataset: GTSRB and Sequence Formulation

The GTSRB dataset consists of 1,306 traffic sign sequences.
Each sequence contains exactly 30 RGB frames and corre-
sponds to a single physical sign instance. As a vehicle ap-
proaches a sign, a sequence captures the same object from
varying distance, reflecting realistic temporal progression in
road scenarios.

We define the i-th sequence as:

Si = {Iit}30t=1, yi ∈ C (1)

where each frame is annotated with a tight axis-aligned
bounding box that encloses the traffic sign, with all signs
categorized into C = 43 classes, denoted by C.
Preprocessing. To ensure uniform scale and alignment
for downstream tasks, each frame undergoes the following
transformation:
1. Cropping: The image is cropped using its ground truth

bounding box. This removes background context and
centers the traffic sign within the image.

2. Resizing: The cropped patch is resized to 128 × 128
pixels using bilinear interpolation. This enforces a con-
sistent input resolution and scale across all frames.

3. Representation: Each processed image is stored as an
RGB array of shape 128× 128× 3, used for all shadow
rendering, visualization, and inference tasks.
The transformation function Preprocess(·) is applied to

each frame in the sequence using its corresponding bound-

ing box, resulting in:

S̃i =
{
Preprocess(Iit , bboxt)

}30

t=1
, Ĩit ∈ R128×128×3.

Dataset Partitioning. The dataset is divided into training
and testing sets at the sequence level. Let the complete
dataset consist of N labeled sequences:

D = { (Si, yi) }Ni=1 ,

where each Si contains 30 RGB frames of the same traf-
fic sign, and yi ∈ C denotes its class label. We apply a
fixed random shuffle to all sequences and allocate 85% to
the training set and the remaining 15% to the test set. Each
sequence is kept intact and assigned entirely to one split,
ensuring no frame-level overlap. The training split is used
to train the GTSRB-CNN classifier and fine-tune the DINO
attention model, while the test split is reserved exclusively
for adversarial shadow generation and evaluation.

3.2. Attention Supervision via DINO ViT
To guide and analyze how adversarial shadows affect atten-
tion mechanisms, we use a pretrained ViT from the DINO
framework. This model is fine-tuned on the training split
of the GTSRB dataset. We adopt the vit small archi-
tecture, which contains h = 6 attention heads in its final
self-attention layer. For each input image I ′ ∈ R128×128×3,
the model outputs h individual attention maps, which are
averaged to obtain a single spatial attention distribution:

A(I ′) ∈ R128×128,

representing the average self-attention across all heads in
the final transformer layer. These maps reflect how the
model distributes attention spatially over the image. For
supervision and comparison, we compute clean and shad-
owed attention maps for each frame in a sequence. Given a
clean image I and its shadowed counterpart I ′, their atten-
tion maps are denoted A(I) and A(I ′), respectively. The
clean maps are cached prior to attack for computational effi-
ciency. To quantify how much a shadow-perturbed image I ′

diverges from its clean version, we compute a mean squared
error (MSE) between the two attention maps:

Lattn(I
′) =

1

1282

∥∥∥A(I ′) − A(I)
∥∥∥2
2
. (2)

A high value of Lattn indicates that the adversarial
shadow has significantly disrupted the attention pattern of
the original frame. This metric serves as an auxiliary ob-
jective during the attack optimization process to maximize
attention deviation in addition to misclassification.

3.3. Adversarial Shadow Generator
We use a parametric shadow generation module that over-
lays synthetic shadows onto clean traffic sign images. RGB



images are converted to LAB color space, where only the L
(luminance) channel is manipulated to simulate cast shad-
ows—allowing realistic shading without altering color in-
formation. After the photometric transformation, the im-
age is converted back to RGB. This approach enables fine-
grained control over lightness while preserving the natural
visual structure, resulting in effective perturbations that de-
ceive both classification and attention mechanisms.
Shadow Parameterization. A shadow mask is defined by
a tuple:

θ =
{
(xj , yj)

K
j=1, α

}
,

where {(xj , yj)}Kj=1 are the control points of the shape
(polygon or triangle), and α ∈ [0.1, 0.7] is the opacity con-
trolling the shadow’s intensity.

We consider two geometric configurations:
• Polygonal mask (K = 4). To ensure the quadrilateral

covers diverse regions of the image, each vertex (xj , yj)
is sampled from a distinct quadrant. Let W and H denote
the image width and height. We define:

(xj , yj) ∼ U
(
Rj

)
, for j = 1, . . . , 4, (3)

where each region Rj is a rectangular subregion (e.g.,
top-left, top-right, etc.) of the image domain [0,W ] ×
[0, H]. This enforces spatial spread and coverage from
multiple angles around the traffic sign.

• Triangular mask (K = 3). For wedge-like occlusions,
triangle vertices are sampled relative to the image center
(xc, yc) = (W2 , H

2 ):

(xj , yj) = (xc + δxj , yc + δyj), δxj , δyj ∼ U(rj),
(4)

where U(rj) is a uniform distribution over a bounded off-
set region. The offsets are designed such that one vertex
lies above the center and the others below it, forming a
forward-leaning triangle. This configuration mimics cast
shadows from roadside structures or vehicle parts.

Opacity Sampling. The opacity parameter α is sampled
uniformly:

α ∼ U [0.1, 0.7], (5)

ensuring that shadows are perceptible but do not obscure the
traffic sign entirely. During genetic mutation, α is perturbed
with small Gaussian noise and clipped to remain within this
interval.
Shadow Transformation. Once a shadow mask Mθ is
created, the image I ∈ RH×W×3 is modified inside the
masked region using photometric transformations:

I ′ = T (I, Mθ, α), (6)

where T includes:

(a) Polygon - Stop Sign (b) Polygon - Speed Limit 30

(c) Triangle - Stop Sign (d) Triangle - Speed Limit 30

Figure 3. Comparison of adversarial shadow shapes with identical
opacity (0.21). Each pair shows a shadowed input (left) and its
corresponding DINO attention map (right).

1. Luminance Attenuation: We darken the image in LAB
space within the shadow region. Let ILAB be the LAB
conversion of I , then:

ILAB
shadow(x, y, 0) ← (1− α) · ILAB(x, y, 0),

∀ (x, y) ∈ supp(Mθ). (7)

2. Post-processing Filters: Then, we apply a sequence of
visual enhancements. First, Gaussian smoothing is ap-
plied around the perimeter of Mθ to avoid harsh mask
boundaries, with kernel size proportional to object scale.
Next, a motion blur kernel simulates directional streaks
in the shadow, mimicking the appearance of cast shad-
ows during movement. Finally, brightness normalization
is applied by scaling the entire LAB image uniformly to
preserve dynamic range.

Temporal Scaling. When shadows are applied to an im-
age sequence S = Ĩ1, . . . , ĨT , the shadow mask is progres-
sively scaled across time steps to simulate a changing dis-
tance from the sign:

st = smin +

(
t− 1

T − 1

)
· (smax − smin), (8)

where smin and smax are scaling coefficients (e.g., 0.6 and
1.0), and st is applied to the polygon/triangle before over-
laying it on frame t.

The final transformed sequence becomes:

S̃shadow =
{
T (Ĩ1, Mθ1 , α), . . . , T (ĨT , MθT , α)

}
.

This approach produces dynamic, spatially varying oc-
clusions that affect a classifier’s prediction and attention re-
sponse over time.

3.4. Genetic Algorithm Optimization
Given a sequence S = {I1, . . . , IT } with ground truth la-
bel y ∈ C, our objective is to find optimal shadow param-
eters θ∗ such that the resulting shadowed sequence S ′ =



{I ′1, . . . , I ′T } causes significant degradation in both classi-
fication accuracy and attention consistency. We formulate
this as a multi-objective optimization problem, where the
total loss for a shadow configuration θ is defined as:

Ltotal(θ) =
1

T

T∑
t=1

[Lcls(I
′
t)− λLattn(I

′
t)] (9)

where λ ∈ R≥0 controls the relative importance of at-
tention shift versus classification misdirection.

Classification Loss. To evaluate the classifier’s prediction
confidence for the true class y on frame I ′t, we use the soft-
max probability ŷ

(y)
t :

Lcls(I
′
t) =

{
1− ŷ

(y)
t , if ŷt = y

ŷ
(y)
t , otherwise

(10)

This loss is minimal when the classifier is confident
about the correct label, and maximal when the classifier as-
signs low probability to the true class, thereby encouraging
misclassification.

Attention Loss. To measure attention perturbation, we
compare the DINO-generated attention map A′

t of each
shadowed frame I ′t to its clean counterpart Aclean

t from the
same sequence, using mean squared error (MSE) between
the two spatial distributions:

Lattn(I
′
t) =

1

P 2

∥∥∥∥ A′
t

maxA′
t

− Aclean
t

maxAclean
t

∥∥∥∥2
2

(11)

where P = 128 is the spatial resolution of the attention
map. This loss penalizes perceptual shifts in visual atten-
tion caused by the adversarial shadow. A large Lattn implies
that the model’s focus has deviated significantly from its
expected, unperturbed distribution — potentially leading to
poor interpretability and degraded decision reliability.

Genetic Algorithm Steps. We minimize Eq. (9) using a
genetic algorithm that evolves shadow parameters over gen-
erations to maximize the joint loss. Each individual θ(k) en-
codes a shadow configuration consisting of control points
and an opacity value. Candidate shadows are applied to the
input sequence using temporally scaled masks, and the re-
sulting sequence is evaluated using the total loss.

After evaluation, the fittest individuals are selected to
generate new candidates via crossover and mutation. This
evolutionary process continues for G generations or until
convergence. An attack is deemed successful if at least τ
out of T frames are misclassified:

T∑
t=1

I [argmax fCNN(I
′
t) ̸= y] ≥ τ. (12)

(a) Shadowed sequence with attention guidance (λ = 0.5).

(b) Shadowed sequence without attention guidance (λ = 0).

Figure 4. Visual comparison of shadow patterns generated with
and without DINO-based attention supervision. Both sequences
successfully cause misclassification of the same 50 speed limit
sign.

The full genetic optimization process is summarized in
Algorithm 1, which begins by randomly initializing a pop-
ulation of shadow parameter sets, each encoding a unique
combination of shape geometry and opacity. For each can-
didate, shadows are applied across the sequence, and both
the classification confidence and DINO attention maps are
computed. These are compared against clean references to
quantify the impact of the shadow via a combined loss func-
tion. If any candidate causes at least τ frames to be misclas-
sified, the algorithm terminates early for that sequence and
returns the corresponding parameters. Otherwise, the fittest
candidates — those that most effectively degrade classifica-
tion and attention — are selected to generate the next pop-
ulation through crossover and mutation. This evolutionary
process continues for a fixed number of generations or until
early stopping is triggered.

4. Experiment
Loss Computation. During optimization, each frame I ′t
is passed through the CNN classifier and the DINO atten-
tion extractor. Classifier predictions (ŷt, ŷ

(y)
t ) and atten-

tion maps A′
t are compared against clean references Aclean

t

(cached). The per-sequence total loss is computed as de-
scribed in Sec. 3.4, combining classification and attention
terms to guide the genetic search.

Evaluation and Results. Sequence-Level Attack Suc-
cess Rate (SL-ASR) is defined as the percentage of test se-
quences where the following condition is satisfied: at least
τ out of T frames in the adversarial sequence are misclas-
sified. Formally, for a given sequence S ′ = {I ′1, . . . , I ′T }:

T∑
t=1

I [argmax fCNN(I
′
t) ̸= y] ≥ τ. (13)

which ensures that a large portion of the sequence is af-



Algorithm 1: Genetic Algorithm for Sequence-
Level Adversarial Shadow Attack

Input: Sequence S = {I1, I2, . . . , IT } with label
y,

Meta attention map Ay from DINO,
Cached clean attention maps {Aclean

t }Tt=1,
Population size P , number of generations G,
threshold τ , shadow shape
∈ {polygon,triangle}
Output: Optimized shadow parameters θ∗ and

adversarial sequence {I ′t}Tt=1

1 Initialize population {θ(1), . . . , θ(P )} with random
control points and opacity

2 for g = 1 to G do
3 foreach candidate θ(k) in population do
4 Generate scaled shadow masks {M (k)

t }Tt=1

via temporal scaling
5 Apply shadow transformation:

I
′(k)
t ← T (It,M (k)

t , α(k))

6 Run classifier: obtain fCNN(I
′(k)
t ) and

confidence scores
7 Extract DINO attention maps {A(k)

t }Tt=1

8 Compute per-frame classification and
attention losses:

9

L(k)
cls =

1

T

T∑
t=1

(
1− fCNN(I

′(k)
t )y

)

L(k)
attn =

1

T

T∑
t=1

∥∥∥A(k)
t −Aclean

t

∥∥∥2
2

Total loss: L(k) = L(k)
cls − λ · L(k)

attn
10 Count misclassifications:

m(k) ←
∑T

t=1 I[argmax fCNN(I
′(k)
t ) ̸= y]

11 if m(k) ≥ τ then
12 return θ(k) and adversarial sequence

{I ′(k)t }Tt=1 // Early stopping

13 Select top-P/2 candidates with lowest L(k)

14 Apply crossover and mutation to generate P/2
offspring

15 Form next generation by combining parents and
offspring to size P

16 return θ∗ = argmink L(k) and corresponding
shadowed sequence

fected, making the shadow attack more impactful and per-
sistent.

We evaluate our attack on the 15% held-out test set

Table 1. SL-ASR at varying thresholds τ for λ = 0 and λ = 0.5,
using triangle and polygon shadows.

SL-ASRTriangle SL-ASRPolygon

τ λ = 0 λ = 0.5 ∆ λ = 0 λ = 0.5 ∆

29 40.4% 52.3% +11.9% 45.5% 56.9% +11.4%
27 50.6% 64.2% +13.6% 55.1% 68.3% +13.2%
17 65.7% 84.2% +18.5% 70.4% 87.5% +17.1%

of GTSRB sequences, where the clean classification accu-
racy of the GTSRB-CNN model reaches 97.3%. As shown
in Table 1, when applying our full shadow-based attack
with joint optimization of classification and attention loss
(λ = 0.5), we observe an SL-ASR of 84.2% for a mis-
classification threshold of τ = 17, 64.2% for τ = 27, and
52.3% for the stricter threshold τ = 29 using triangle shad-
ows. To isolate the role of attention guidance, we ablate
the attention loss by setting λ = 0, thereby optimizing only
for misclassification. Under this setting, SL-ASR drops to
65.7% (τ = 17), 50.6% (τ = 27), and 40.4% (τ = 29),
indicating that DINO-based attention supervision signifi-
cantly enhances attack effectiveness by making perturba-
tions more persistent and robust across the sequence. A sim-
ilar trend is observed with polygon shadows, which achieve
even higher SL-ASR values at each threshold. Specifically,
as λ increases from 0 to 0.5, SL-ASR improves from 70.4%
to 87.5% (τ = 17), from 55.1% to 68.3% (τ = 27), and
from 45.5% to 56.9% (τ = 29), respectively. These results
confirm that incorporating attention loss not only amplifies
misclassification but also promotes spatially consistent and
stealthy perturbations throughout the sequence.

Figure 3 illustrates the impact of different shadow shapes
— polygonal and triangular — on DINO attention maps.
In each pair, the left image shows the adversarial shadow
overlay, and the right shows the corresponding attention re-
sponse. Brighter regions in the attention maps indicate areas
of high model focus. Notably, the shadows are strategically
positioned over these high-attention regions to suppress ac-
tivation, thereby reducing the model’s confidence in key se-
mantic areas.

To better understand the qualitative and quantitative im-
pact of DINO attention supervision, Figure 4 compares ad-
versarial shadows generated with (λ = 0.5) and without
(λ = 0) attention loss guidance, applied to the same 50
km/h speed limit sequence. In the top row, where DINO
supervision is active, the generated shadows are smaller
and more targeted, preserving most of the digit ”5” while
subtly distorting key regions, leading to misclassification
with minimal visual disturbance. In contrast, the bottom
row shows shadows optimized solely for misclassification,
where the shadow is larger and indiscriminately darkens
nearly half of the sign, including the full digit ”5”.



To quantify the visual subtlety of these perturbations, we
compute the L2 distance between each adversarial image
and its clean counterpart. Sequences generated with atten-
tion guidance (λ = 0.5) exhibit significantly lower L2 dis-
tances (mean = 0.165) compared to those without (λ = 0).
This confirms that attention-aware optimization not only en-
hances attack consistency but also produces more localized
and stealthy perturbations, supporting the notion that dis-
rupting internal model focus can improve the efficiency and
plausibility of physical-world adversarial attacks.

5. Conclusion

In this work, we proposed a novel framework for generat-
ing temporally coherent adversarial shadows targeting traf-
fic sign recognition models. Unlike prior single-frame at-
tacks, our approach operates over entire image sequences,
simulating real-world scenarios where a sign is viewed from
varying distances. By keeping the shadow spatially consis-
tent in shape and opacity while allowing its scale to evolve
across time, we create visually plausible perturbations that
persist across frames. We use a non-differentiable genetic
algorithm to search over shadow configurations, guided by
a multi-objective loss that combines misclassification confi-
dence with attention deviation based on DINO ViT attention
maps. This dual-objective formulation not only degrades
classification performance but also disrupts the model’s in-
ternal reasoning, enhancing interpretability and impact. Ex-
periments on the GTSRB benchmark demonstrate that in-
corporating attention supervision significantly boosts attack
performance. Under strict success criteria — requiring mis-
classification in at least τ out of T frames — the proposed
method achieves up to 87.5% SL-ASR. Across all thresh-
olds, SL-ASR improves from a range of 40.4%–70.4%
(without attention) to 52.3%–87.5% (with attention), con-
firming the effectiveness of attention-guided shadow opti-
mization for both triangle and polygon masks.
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