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Abstract

Ensuring trustworthiness in multi-UAV collaboration is es-
sential for deploying autonomous aerial systems in safety-
critical applications such as search and rescue, environ-
mental monitoring, and infrastructure inspection. How-
ever, UAV decision-making remains opaque and suscepti-
ble to perception inconsistencies, sensor noise, and net-
work uncertainties, undermining reliability in real-world
scenarios. To address these challenges, we propose a self-
supervised framework for explainable and robust multi-UAV
decision-making, enabling UAVs to generate interpretable
confidence assessments, verify internal consistency, and dy-
namically adjust decision thresholds based on environmen-
tal conditions and mission dynamics. Mutual verification
through external consistency validation ensures alignment
in perception and decision logic while mitigating the ef-
fects of sensor noise and adversarial perturbations. Addi-
tionally, our dynamic network adaptation mechanism ad-
justs confidence propagation weights and seamlessly in-
tegrates new agents, preserving decision stability despite
fleet variations. We formalize this framework through rig-
orous mathematical modeling, proving that confidence up-
dates remain bounded and self-regulating, that multi-UAV
consensus is consistently achievable, and that system-wide
decision adaptation remains stable under operational un-
certainties. By enhancing interpretability, adaptability, and
robustness, this framework lays the foundation for advanc-
ing trustworthy autonomous multi-agent systems in complex
real-world applications.

1. Introduction

Despite significant advances in UAV and AI technolo-
gies, the inherent opacity of deep learning models remains
a critical challenge in achieving trustworthy and robust
UAV collaboration [8, 16, 23]. Deep learning models,
widely employed for autonomous perception and decision-

Figure 1. The proposed framework for multi-UAV collabora-
tion enables robust and adaptive decision-making. Each UAV au-
tonomously generates an explanation report, verifies its confidence
through internal consistency checks, and dynamically adjusts its
decision threshold before sharing information with the team. The
multi-UAV network then conducts target confirmation, decision
validation, and consensus refinement, ensuring coordinated and re-
silient operations while adapting to dynamic network conditions.

making, often function as “black boxes,” obscuring the
rationale behind their decisions and impeding reliability
assessments [9, 56, 74]. In safety-critical UAV applica-
tions such as search and rescue [1, 21, 81], environmen-
tal monitoring [14, 28, 50, 85], and infrastructure inspec-
tion [4, 12, 49, 64], the lack of decision transparency raises
fundamental concerns regarding accountability, safety, and
adaptability. UAVs are expected to operate autonomously
in dynamic and uncertain environments; however, without
a structured mechanism for explaining and verifying their
decisions, neither human operators nor collaborating UAVs
can reliably assess the correctness, appropriateness, or ro-
bustness of their actions [40, 41]. This opacity not only un-
dermines trust in UAV-based autonomous systems but also
limits their capacity to justify critical decisions, a crucial
requirement in high-stakes missions [31, 68].

The challenge is further exacerbated in multi-UAV sys-
tems, where agents must coordinate and make collective de-
cisions based on distributed, potentially inconsistent infor-
mation [59, 66]. Each UAV operates with its own sensors,



models, and environmental understanding, leading to vari-
ations in confidence estimation, perception accuracy, and
action selection. Unaddressed inconsistencies can disrupt
mission execution, induce inter-agent conflicts, and create
vulnerabilities to adversarial manipulations [6, 15, 80, 90].
The absence of a formalized cross-UAV verification mech-
anism compounds these risks, as UAVs may reach con-
flicting conclusions, resulting in miscommunication, deci-
sion divergence, or mission failure [39, 45, 89]. Ensur-
ing robust and explainable decision-making in collabora-
tive UAV systems is therefore imperative, as UAVs must
not only adapt to dynamic environments but also defend
against adversarial threats that exploit decision inconsisten-
cies [29, 42, 44, 78].

Another fundamental challenge arises from the ever-
changing nature of real-world UAV operations. UAVs fre-
quently operate in complex, unpredictable, and noisy en-
vironments where external factors—such as fog, smoke,
high winds, or electromagnetic interference—degrade sen-
sor performance, leading to incomplete, erroneous, or con-
flicting observations [3, 10, 54, 65, 75]. Even state-of-the-
art deep learning models struggle under such conditions,
as their inputs may be inherently noisy, sparse, or adver-
sarially perturbed. Additionally, real-time UAV decision-
making introduces further complexity, requiring continuous
confidence evaluation, inter-UAV consistency verification,
and adaptive decision-making under evolving mission con-
straints [7, 25, 59, 60]. Without a structured framework for
real-time confidence adjustment, cross-UAV validation, and
collaborative decision adaptation, UAV fleets risk opera-
tional incoherence, compromising mission success in high-
stakes deployments [48].

To address these challenges, we propose a mathemati-
cally grounded framework for trustworthy multi-UAV col-
laboration, integrating explainable self-supervision, multi-
agent consensus verification, and dynamic decision adapta-
tion to enhance the robustness, interpretability, and adapt-
ability of UAV-based decision-making. Each UAV au-
tonomously generates an explanation report, documenting
confidence scores, decision rationales, and proposed ac-
tions, forming the basis for internal consistency verification
and external peer validation. Through multi-perspective,
multi-sensor fusion, UAVs conduct secondary target detec-
tion confirmation, decision process validation, and coor-
dinated consensus formation, thereby reducing uncertainty
and improving decision reliability. Furthermore, our frame-
work incorporates a dynamic confidence adaptation mech-
anism, allowing UAVs to adjust decision thresholds and in-
fluence weights as agents join or leave the mission, ensuring
decision resilience and stability under varying conditions.

This work provides a rigorous mathematical formula-
tion of multi-UAV confidence evaluation and collaborative
decision-making, proving that confidence updates remain

bounded and self-regulating, that multi-UAV consensus is
consistently achievable, and that system-wide decision sta-
bility is preserved under sensor perturbations, network fluc-
tuations, and environmental uncertainties. By integrating
explainable self-supervision, collaborative verification, and
dynamic decision adaptation, our framework establishes a
foundation for trustworthy multi-UAV collaboration, con-
tributing to the development of robust, interpretable, and
resilient UAV autonomy in safety-critical applications.

The contributions of this paper are summarized as fol-
lows:
• We propose a self-supervised confidence evaluation

framework, enabling UAVs to generate and utilize expla-
nation reports to enhance decision transparency and inter-
pretability.

• We introduce a multi-UAV external consistency verifica-
tion mechanism, allowing UAVs to perform mutual val-
idation, multi-perspective target confirmation, and col-
laborative decision alignment, thereby improving mission
robustness and reliability.

• We develop a dynamic confidence adaptation strategy, en-
abling UAVs to adjust decision thresholds based on envi-
ronmental changes, sensor reliability, and network condi-
tions, ensuring adaptability in real-world UAV operations.

• We provide a rigorous mathematical formulation of
the framework, ensuring that confidence evaluation,
decision-making, and UAV coordination remain stable,
convergent, and robust under operational uncertainties.

2. Related Work

2.1. Trustworthy Decision-Making in Multi-UAV
Systems

Ensuring trustworthiness in autonomous UAV decision-
making is a fundamental challenge, particularly in safety-
critical applications where erroneous or non-interpretable
decisions can lead to mission failure. Traditional UAV de-
cision frameworks often rely on rule-based logic or prob-
abilistic models [36, 67, 70], which lack adaptability in
complex and uncertain environments. While explainable
AI (XAI) approaches have been explored to enhance UAV
decision transparency, most methods focus on post-hoc in-
terpretation rather than embedding explainability within the
decision-making process itself [2, 5, 17, 32, 62, 71, 86].

Existing trust modeling in multi-agent systems fre-
quently employs Bayesian inference or graph-based trust
estimation [24, 27, 55, 61, 72, 82], yet these approaches
do not explicitly address how individual UAVs should
internally validate their confidence levels before making
mission-critical decisions [43, 69, 76]. Furthermore, many
prior methods assume static confidence assessments, over-
looking the necessity of real-time adaptation to dynamic op-
erational conditions [19, 33, 34, 77].



In contrast, our framework introduces a self-supervised
confidence evaluation mechanism, enabling UAVs to gen-
erate explanation reports and verify internal consistency be-
fore sharing decisions. By integrating adaptive confidence
thresholding, UAVs dynamically adjust their decision reli-
ability in response to environmental complexity, improving
the trustworthiness of autonomous UAV operations.

2.2. Consensus Mechanisms and Collaborative Ver-
ification in UAV Networks

Multi-UAV collaboration hinges on effective information
sharing and decision consensus, yet existing frameworks of-
ten suffer from sensor inconsistencies, misaligned percep-
tions, and conflicting action strategies [33, 34, 77]. Tra-
ditional consensus algorithms, such as distributed Kalman
filters [26, 51, 88] and consensus-based belief propaga-
tion [11, 37, 38, 48, 53], typically assume homogeneous
and synchronized observations, an assumption rarely met
in real-world deployments.

Recent advances in distributed decision-making have ex-
plored cross-UAV verification and multi-view fusion tech-
niques to mitigate perception inconsistencies [39, 66, 79,
89, 90]. However, many of these methods rely on prede-
fined confidence models, rendering them inflexible to envi-
ronmental variations [6, 20, 22, 57, 63], or lack a structured
framework for resolving decision conflicts through iterative
peer validation [13, 35].

Our framework advances these efforts by introducing
multi-UAV external consistency verification, where UAVs
not only share explanation reports but also perform sec-
ondary target detection confirmation and decision process
validation to refine mission-critical decisions. By leverag-
ing multi-perspective cross-verification and adaptive con-
sensus refinement, our approach enhances collaborative de-
cision alignment, mitigating the impact of sensor uncer-
tainty and adversarial perturbations.

2.3. Dynamic Confidence Adaptation in UAV Sys-
tems

In real-world multi-UAV networks, confidence estimation
must be adaptive to account for environmental noise, agent
fluctuations, and task uncertainties. Most existing confi-
dence estimation techniques rely on fixed thresholds that
fail to adjust dynamically to network conditions or evolv-
ing mission demands [18, 42, 52, 73]. While some studies
have explored confidence propagation in multi-agent sys-
tems, they often assume static UAV networks, where agents
do not dynamically enter or leave [15, 58, 80, 87].

Another limitation of prior research is the absence of a
resilient confidence adjustment strategy for handling incon-
sistent observations. Existing belief update models apply
heuristic weighting but do not incorporate real-time adjust-
ments based on UAV network evolution [30, 46, 47, 83, 84].

Our proposed dynamic confidence adaptation mecha-
nism allows UAVs to adjust decision thresholds, update
confidence propagation weights, and reallocate influence
based on mission needs. By formulating confidence adap-
tation as a bounded, self-regulating process, we ensure
that UAV networks maintain stability and decision robust-
ness despite sensor perturbations, UAV departures, and task
complexity variations.

3. Framework for Trustworthy Multi-UAV
Collaboration

Ensuring the trustworthiness and robustness of UAV col-
laboration in autonomous missions remains a fundamental
challenge, particularly in safety-critical applications such
as search and rescue, environmental monitoring, and in-
frastructure inspection. Traditional UAV decision architec-
tures often lack transparency and explainability, complicat-
ing verification and validation in complex environments.
While deep learning-based UAV systems offer powerful
perception and decision-making capabilities, their black-
box nature and susceptibility to uncertainty and adversarial
perturbations limit their reliability. Addressing these chal-
lenges requires a structured approach in which each UAV
not only evaluates its own decision confidence but also en-
gages in collaborative verification to ensure mission-level
consistency.

Figure 2. Each UAV autonomously generates an explanation re-
port, validates its confidence through internal verification, and
shares the report with the UAV network. The multi-UAV system
then conducts target verification, decision alignment, and consen-
sus formation, ensuring robust collaboration despite uncertainties.
The framework dynamically adapts to network fluctuations and
environmental variations, maintaining stability and resilience in
UAV operations.

To this end, we propose a multi-level explainability
and robustness framework (Fig. 2) that integrates self-
supervised confidence evaluation at the individual UAV
level with external consistency verification at the system



level. This framework enables UAVs to autonomously gen-
erate and validate interpretable decision reports, dynami-
cally adapt their confidence thresholds, and achieve multi-
UAV consensus, thereby enhancing mission robustness.

3.1. Single-UAV Confidence Evaluation and
Decision-Making

At the individual level, each UAV must assess the relia-
bility of its own observations and decisions. Given the
uncertainties inherent in real-world environments, UAV
decision-making is influenced by sensor noise, environmen-
tal variability, and adversarial disturbances. To mitigate
these effects, each UAV follows a structured self-supervised
confidence evaluation process (Fig. 3), allowing it to au-
tonomously generate, validate, and refine its decision-
making through explainability-driven self-assessment.

Each UAV first generates an explanation report, which
serves as a transparent record of its decision-making pro-
cess. This report includes target characteristics, estimated
position, predicted confidence scores, decision rationale,
and the reasoning behind its autonomous action selection.
By explicitly documenting its decision process, the UAV
creates a structured representation that can be internally val-
idated and later shared with collaborating UAVs for collec-
tive verification.

Figure 3. A UAV first perceives its environment, generates an ex-
planation report, and performs internal consistency verification to
refine its confidence assessment. It then dynamically adjusts its
confidence threshold in response to environmental conditions and
mission requirements. Once validated, the UAV updates its report
and shares it with the network, ensuring transparent, adaptive, and
reliable decision-making.

Following report generation, the UAV conducts internal
consistency verification to ensure that its conclusions align
with sensory inputs and contextual understanding. This in-
volves cross-referencing confidence scores with raw sensor
data to validate whether the assigned confidence level is
supported by available evidence. If discrepancies arise, the
UAV refines its confidence estimates and updates its report
accordingly.

Once internal validation is complete, the UAV applies a
self-adaptive confidence thresholding mechanism, dynami-
cally adjusting decision thresholds based on environmental
conditions and prior performance. This ensures that deci-
sion thresholds remain optimal across different operational

contexts. Once confidence assessment stabilizes, the UAV
refines its explanation report and prepares it for dissemina-
tion to other UAVs for external validation.

3.2. Multi-UAV Collaborative Decision-Making
While self-assessment is crucial, it alone does not guar-
antee system-wide robustness. UAVs must engage in ex-
ternal consistency verification, wherein each UAV shares
its explanation report with collaborating UAVs to achieve
system-wide agreement. This process ensures collective
verification of observations, alignment of decisions, and co-
ordinated execution of mission tasks.

Upon receiving an explanation report from a peer UAV,
collaborating UAVs initiate external consistency verifica-
tion, which consists of two key components: target detec-
tion validation and decision process validation.

During target detection validation, UAVs leverage multi-
angle perspectives and heterogeneous sensing modalities
(e.g., infrared, LiDAR, radar) to cross-check reported ob-
servations. Since UAVs operate from different viewpoints,
their collective assessment provides a more comprehensive
verification of the detected target. If shared confidence as-
sessments align with the initial detection report, the target
identification is confirmed; otherwise, additional verifica-
tion steps are triggered.

Figure 4. Upon receiving explanation reports, UAVs perform
multi-angle target confirmation and decision validation to resolve
discrepancies and enhance collective confidence. The system then
refines decision weights and consensus alignment, ensuring coor-
dinated UAV actions. Additionally, UAVs adapt to network fluctu-
ations, maintaining stable operations in dynamic environments.

Following target detection validation, UAVs perform de-
cision process validation, ensuring that the reported deci-
sion rationale is logically sound and aligned with mission
objectives. Each UAV independently assesses whether the
reasoning presented in the explanation report is consistent
with its own situational understanding. If inconsistencies
arise, the system initiates a secondary verification process
to resolve discrepancies before finalizing an action plan.

Once both validation phases are complete, UAVs tran-



sition to collaborative decision execution, aligning their
movements, resource allocations, and operational behaviors
based on the validated explanation reports. This coordina-
tion ensures that all UAVs execute tasks in harmony, main-
taining system-level robustness and adaptability despite en-
vironmental uncertainties and potential adversarial interfer-
ences.

Through this structured explainability-driven, self-
supervised, and collaborative verification approach, the
proposed framework enhances multi-UAV decision trans-
parency, reliability, and resilience. It enables UAV teams
to execute missions with high confidence, even in dynamic
and uncertain conditions.

4. Methodology
To ensure trustworthy and robust UAV decision-making,
we propose a self-supervised confidence evaluation frame-
work that integrates explanation-based decision verifica-
tion, multi-UAV consistency validation, and dynamic confi-
dence thresholding. This section details the core methodol-
ogy, focusing on internal and external consistency verifica-
tion mechanisms that enhance decision reliability.

4.1. Explainable Self-Supervision Mechanism
Ensuring decision transparency and robustness in au-
tonomous UAV operations requires a self-supervised con-
fidence evaluation mechanism that enables UAVs to gener-
ate, validate, and refine their decision-making process. This
mechanism is essential in dynamic environments where
UAVs must operate under sensor uncertainties, adversarial
perturbations, and mission constraints, necessitating both
internal confidence evaluation and consistency verification
before engaging in collaborative decision-making.

4.1.1. Confidence Report Generation and Internal Con-
sistency Verification

Each UAV generates an explanation report that documents
key aspects of its detection and decision-making process.
This report serves as a structured decision trace, enabling
the UAV to perform internal consistency verification before
sharing its observations with other UAVs.

To verify internal consistency, the UAV cross-references
its confidence assessments across different sensing modal-
ities and historical data. If inconsistencies arise—such as
discrepancies between a target’s observed attributes and ex-
pected classification—the UAV updates its confidence eval-
uation to prevent overconfidence.

Formally, given an initial confidence estimate Ci(Tk) for
a detected target Tk, the UAV adjusts its self-assessment by
incorporating verification results from its internal consis-
tency check:

C
(t+1)
i = C

(t)
i + λ(C

(t)
self − C

(t)
i ) (1)

where C
(t)
self represents the expected confidence based on

prior observations and multimodal validation.
The internal consistency check evaluates whether the

confidence deviation remains within an acceptable range:

Dself = |Ci(Tk)− Cself(Tk)| (2)

where Dself represents the discrepancy between the UAV’s
self-evaluated confidence and the expected confidence de-
rived from historical observations. To ensure consistency,
the UAV defines a self-consistency threshold δself, where:

Dself ≤ δself (3)

If Dself > δself, the UAV updates its explainability report
by refining its confidence estimate:

C
(t+1)
i = C

(t)
i + γ(C

(t)
self − C

(t)
i ) (4)

where γ controls the rate of self-correction. This en-
sures that confidence updates remain bounded and self-
correcting, reducing the likelihood of misclassification er-
rors.

4.1.2. Adaptive Confidence Thresholding
Environmental factors such as visibility, electromagnetic
interference, and terrain complexity significantly impact
sensor reliability. A static confidence threshold may lead
to overconfidence in noisy conditions or excessive conser-
vatism in optimal environments, thereby reducing mission
efficiency. To mitigate these issues, UAVs employ an adap-
tive confidence thresholding mechanism, dynamically ad-
justing decision criteria based on environmental feedback.

The UAV’s confidence threshold θ(t+1)
i is updated itera-

tively:

θ
(t+1)
i = θ

(t)
i + β

∑
j ̸=i

(Cj(Tk)− Ci(Tk)) (5)

where Cj(Tk) represents confidence scores from other sens-
ing perspectives, and β controls the adaptation rate.

This mechanism ensures that the UAV’s decision-
making remains context-aware, reducing false positives
in challenging environments while allowing for faster
decision-making in clear conditions.

The updated confidence threshold is evaluated against an
environmental adaptation factor:

θ
(t+1)
i = θ

(t)
i + η(Ei − Ē) (6)

where Ei represents environmental complexity (e.g., noise
level, visibility conditions), and Ē is the historical mean
environmental complexity. This allows UAVs to refine their
thresholds dynamically, ensuring resilience under varying
conditions.

Following these adjustments, the UAV updates its ex-
plainability report, integrating refined confidence estimates
and revised decision justifications before engaging in multi-
UAV collaboration.



4.2. Multi-UAV Consistency Verification
While individual UAVs perform self-assessment, their per-
ception is inherently limited by sensor perspectives, envi-
ronmental uncertainties, and adversarial factors. To en-
hance system-wide robustness, UAVs engage in external
consistency verification, where they compare explainability
reports, validate detected targets, assess decision rationales,
and achieve consensus-driven action execution.

The verification process consists of three stages: sec-
ondary target detection confirmation, decision process val-
idation, and collaborative decision-making. These stages
ensure that UAVs compensate for individual sensor limita-
tions while reinforcing system-wide trustworthiness.

4.2.1. Secondary Target Detection Confirmation
Since UAV detections are subject to sensor noise and en-
vironmental interference, all detected targets must undergo
secondary verification from multiple UAVs. When a UAV
i detects a target Tk, it shares its explainability report with
other UAVs in the mission, which independently verify the
detection using different viewing angles, sensing modalities
(e.g., infrared, LiDAR, radar), and real-time environmental
feedback.

The verification process involves computing a cross-
UAV confidence discrepancy measure:

Dconsistency =
1

M

M∑
j=1

|Cj(Tk)− Ci(Tk)| (7)

where M represents the number of UAVs participating in
the verification, and Cj(Tk) is the confidence score as-
signed by UAV j.

A consistency threshold δtarget is defined as the maximum
allowable deviation in confidence scores across UAVs:

Dconsistency ≤ δtarget (8)

If the discrepancy exceeds δtarget, indicating inconsisten-
cies in detection confidence, additional UAVs are requested
to reassess the target. The final aggregated confidence score
is computed as:

Ccollab(Tk) =
1

M

M∑
j=1

Cj(Tk) (9)

ensuring that UAVs collectively validate detections while
mitigating individual errors.

To further enhance robustness, the system reweights
UAV contributions based on sensor reliability:

Cweighted(Tk) =

M∑
j=1

wjCj(Tk) (10)

where wj represents the reliability weight assigned to UAV
j, ensuring that higher-quality observations contribute more
significantly to final decisions.

If consensus is reached, the detected target is confirmed;
otherwise, UAVs may initiate additional reconnaissance ac-
tions to clarify ambiguities.

4.2.2. Decision Process Validation
Beyond verifying the detected target, UAVs must ensure
that the decision logic leading to action selection is inter-
nally and externally consistent. Each UAV cross-validates
its decision rationale by comparing its predicted action
Ai(Tk) with those of other UAVs. The decision consistency
measure is given by:

Ddecision =
1

M

M∑
j=1

∥Aj(Tk)−Ai(Tk)∥ (11)

where Ai(Tk) represents the decision vector proposed by
UAV j, and ∥ · ∥ denotes a norm that quantifies decision
alignment.

If Ddecision > δdecision UAVs reassess their decisions and
refine their explainability reports. To enforce decision con-
sistency, UAVs engage in causal inference analysis, ensur-
ing their justifications align with mission objectives. If a
UAV’s reasoning significantly diverges from fleet consen-
sus, its confidence score is adjusted:

C
(t+1)
i = C

(t)
i + µ

∑
j ̸=i

(Aj(Tk)−Ai(Tk)) (12)

where µ is the adaptation coefficient ensuring that UAV de-
cisions converge towards a logically consistent framework.

4.2.3. Collaborative Decision-Making
Once target detection and decision validation are com-
pleted, UAVs coordinate their actions based on validated
explanation reports. The final decision is refined using a
weighted consensus update rule:

Afinal(Tk) =

M∑
j=1

wjAj(Tk) (13)

where UAVs dynamically adjust decision weights to mini-
mize inconsistencies and ensure optimal mission execution.

Through this structured verification-driven decision-
making, UAV teams achieve a robust, coordinated, and ad-
versarially resilient operational framework, enhancing reli-
ability in safety-critical missions.

4.3. Dynamic Multi-UAV Network Adaptation
Real-world UAV deployments are inherently dynamic, re-
quiring UAV teams to continuously adapt to changes in fleet



composition, environmental conditions, and mission objec-
tives. Unlike static decision frameworks that assume a fixed
fleet operating under stable conditions, an adaptive UAV
system must account for dynamic task allocation, variable
agent participation, and evolving decision confidence. This
section introduces a multi-UAV adaptation mechanism that
ensures decision reliability remains robust even as UAVs
enter, exit, or adjust their confidence models in response to
environmental shifts.

The adaptation framework comprises three key com-
ponents: dynamic UAV influence reweighting, distributed
confidence propagation, and stability guarantees in dynamic
networks. These mechanisms collectively ensure that UAV
teams remain cohesive, resilient, and operationally robust,
preventing confidence oscillations or mission failures due to
network fluctuations.

4.3.1. UAV Network Dynamics and Influence Reweight-
ing

UAV networks are inherently dynamic, with agents join-
ing and leaving the mission space due to operational con-
straints, resource depletion, or emergency reallocation. If
UAV decision models remain static, abrupt changes in fleet
composition can introduce confidence inconsistencies and
degrade mission performance. To prevent such instabilities,
the system continuously reweights UAV influence based on
participation status and decision reliability.

Formally, given a fleet of M(t) UAVs at time t, the sys-
tem maintains a dynamically updated confidence weighting
factor for each UAV i, denoted as wi(t). The confidence
weight is computed as:

w
(t+1)
i =

w
(t)
i

1 + w
(t)
drop

(14)

where w
(t)
drop represents the influence lost due to UAV de-

partures. If a UAV leaves the network, its previous contri-
butions are redistributed across remaining UAVs, ensuring
that confidence estimation remains stable.

Similarly, when a new UAV joins the system, its confi-
dence contribution is initialized as:

w(t+1)
new =

α

M(t+ 1)
(15)

where α is a scaling factor ensuring that new UAVs grad-
ually integrate into the fleet without causing abrupt confi-
dence shifts.

Through this dynamic influence reweighting mechanism,
the system adapts seamlessly to network changes, mitigat-
ing instabilities due to UAV entry or exit while preserving
robust confidence aggregation.

4.3.2. Confidence Propagation and Distributed Adjust-
ment

In a dynamically evolving UAV network, decision confi-
dence must be continuously propagated and adjusted to
maintain mission-wide consistency. Each UAV maintains
an evolving confidence score Ci(Tk), which is updated us-
ing a distributed consensus mechanism.

Given the previous consensus confidence C(t)
collab, the con-

fidence update rule under network changes is:

C
(t+1)
collab = C

(t)
collab + λ

M(t+1)∑
j=1

wj(C
(t)
j − C

(t)
collab) (16)

where λ controls the adjustment rate, and wj represents the
reweighted influence factor introduced in 4.3.1.

If significant inconsistencies arise due to network fluc-
tuations, UAVs iteratively refine their confidence values
through a stability-controlled diffusion process:

C
(t+1)
i = C

(t)
i + ρ

∑
j ̸=i

(C
(t)
j − C

(t)
i ) (17)

where ρ is the diffusion coefficient ensuring that confidence
propagation remains bounded and non-divergent.

This distributed confidence propagation mechanism
maintains decision coherence across UAVs, preventing mis-
sion disruptions due to misaligned decision-making or de-
layed confidence adjustments.

4.3.3. Stability Guarantees in Dynamic Networks
To ensure the proposed UAV adaptation framework remains
stable under continuous network fluctuations, we analyze
the boundedness and convergence properties of the confi-
dence update mechanism.

A necessary condition for system stability is that confi-
dence adjustments must not amplify oscillations or induce
instability in decision consensus. This is achieved when the
confidence deviation variance satisfies:

Var[C(t+1)
collab ] = (1− λW

(t)
eff )

2Var[C(t)
collab] + Var[ξ(t)] (18)

where W
(t)
eff is the dynamically adjusted weight factor, and

ξ(t) represents external perturbations.
To ensure long-term stability and bounded confidence

variance, the adaptation parameters must satisfy:

0 < λW
(t)
eff < 2, ∀t (19)

which guarantees that confidence updates remain self-
correcting rather than oscillatory or divergent. Addition-
ally, the UAV network topology must preserve a connected
graph structure, ensuring that all UAVs receive sufficient
confidence propagation signals to maintain decision consis-
tency.



By satisfying these stability conditions, the system pre-
vents unbounded confidence drift, ensuring that UAV net-
works remain resilient to agent fluctuations while maintain-
ing decision coherence across missions.

Thus, the proposed Dynamic Multi-UAV Network Adap-
tation Mechanism provides a mathematically grounded ap-
proach for resilient confidence evaluation, self-regulating
UAV influence, and stable mission execution, forming a
comprehensive theoretical foundation for trustworthy UAV
collaboration.

5. Discussion and Conclusion
This paper presents a theoretical framework for multi-
UAV confidence evaluation and collaborative decision-
making, ensuring robustness, adaptability, and consistency
in dynamic, uncertain environments. The proposed self-
supervised confidence evaluation mechanism enables UAVs
to generate explainable confidence reports, validate their de-
cisions through internal consistency checks, and adaptively
adjust decision thresholds. Furthermore, external consis-
tency verification allows UAVs to engage in mutual valida-
tion, enhancing collective decision accuracy while mitigat-
ing sensor noise and adversarial perturbations.

By rigorously modeling dynamic network adaptation, we
ensure that UAV teams remain resilient to agent fluctua-
tions, enabling seamless integration of new UAVs and re-
allocation of decision influence when UAVs depart. The
mathematical formulation of confidence updates and de-
cision propagation establishes theoretical guarantees for
bounded confidence variance, convergence of multi-UAV
consensus, and long-term system stability under real-world
operational constraints.

Despite these theoretical guarantees, several practical
challenges remain. First, while our framework assumes that
UAVs can estimate confidence levels with reasonable ac-
curacy, real-world sensor limitations, environmental noise,
and adversarial attacks may introduce biases that affect de-
cision reliability. Second, our approach ensures stability un-
der cooperative conditions but does not explicitly address
scenarios involving malicious UAVs or adversarial interfer-
ence. Future research should explore integrating trust mod-
eling and adversarial robustness strategies to mitigate de-
ceptive confidence updates.

Additionally, real-world multi-UAV systems often en-
counter communication delays, bandwidth limitations, and
asynchronous decision cycles, which may affect the ef-
ficiency of distributed confidence propagation. Future
work will focus on extending the framework to incorporate
network-aware confidence adjustments, ensuring effective
coordination despite communication constraints. Further-
more, exploring machine learning-driven confidence cali-
bration, real-time consensus optimization, and hybrid trust-
aware mechanisms will further enhance UAV collaboration

in safety-critical applications.
By providing a rigorous theoretical foundation for trust-

worthy UAV decision-making, this work advances inter-
pretable, resilient, and adversarially robust autonomous
multi-agent systems, contributing to the broader develop-
ment of trustworthy foundation models in autonomous vi-
sion applications.
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