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Abstract

In the domain of black-box model extraction, conventional
methods reliant on soft labels or surrogate datasets strug-
gle with scaling to high-dimensional input spaces and man-
aging the complexity of an extensive array of interrelated
classes. In this work, we present a novel approach that
utilizes SHAP (SHapley Additive exPlanations) to enhance
synthetic data generation. SHAP quantifies the individ-
ual contributions of each input feature towards the victim
model’s output, facilitating the optimization of an energy-
based GAN towards a desirable output. This method signif-
icantly boosts performance, achieving a 16.45% increase
in the accuracy of image classification models and extend-
ing to video classification models with an average improve-
ment of 26.11% and a maximum of 33.36% on challenging
datasets such as UCF11, UCF101, Kinetics 400, Kinetics
600, and Something-Something V2. We further demonstrate
the effectiveness and practical utility of our method under
various scenarios, including the availability of top-k predic-
tion probabilities, top-k prediction labels, and top-1 labels.

1. Introduction
With the rise in MLaaS (Machine Learning as a Service),
which performs tasks from minute levels [2, 14, 37] to mul-
titasking across domains [11, 42]; There has been a signif-
icant increase in model performance, correlating with their
size and the ability to accommodate large input spaces.
However, these advancements also incentivise malicious
parties to exploit vulnerabilities [45], particularly through
adversarial attacks [61], privacy leaks [20], and model steal-
ing [41]. In this work, we focus on model extraction at-
tacks, which aim to replicate the target model with black-
box access to the model and potentially the target data. Pre-
vious model extraction attacks [38, 47, 54, 55] have pre-
dominantly targeted small datasets such as MNIST and CI-
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Figure 1. Activation Atlas for SHAP (Eq. (6)) objective

FAR, and at the best case scenario have achieved acceptable
extraction accuracy on CIFAR-100, which are minuscule
compared to current datasets and robust models. Although
there are studies scaling to large real-world models like [6],
these are specifically crafted for a target architecture or task,
making a generalized approach challenging.

On the contrary, some methods employ surrogate
datasets [18, 47, 54, 57, 60] to train a substitute model,
providing a prior about the target dataset. However, stud-
ies finding a balance [18] between surrogate and target
datasets are limited in terms of scalability. With the af-
fordable cost of hardware and increased services offering
model fine-tuning for user data [21], relying on surrogate
datasets presents challenges in selecting the appropriate
dataset. While every task in model extraction comes with
its nuances, ranging from classification problems that might
use soft labels or hard labels to top-k predictions/labels or
top-1 prediction/label [5, 19, 25], a generalized base ap-



Figure 2. Distribution based on Victim model prediction on generated samples for CIFAR 100

proach can promote the development of more efficient and
large-scale attacks. In this work, we limit ourselves to
single-label Vision Classifiers, but we do not exploit any
specific architectural constraints or any discrepancy present
in these tasks, thus maintaining an approach that is easily
adaptable to other domains.

We employ SHAP [32], an InterpretableAI Algorithm to
act as a guide to the Generator improving performance and
also supplementing as a weak prior to Zeroth Order Gradi-
ent approximation [23], which is employed in most of the
Model extraction approaches. SHAP Stands for SHapley
Additive exPlanations, It calculates feature importance in-
dicating the contributing of sample towards a black box
models output in Eq. (1), This output can be from a re-
gression, classification or any other open-ended model. We
introduce a differentiable pipeline that utilizes SHAP val-
ues to optimize the generator for custom objectives. Within
this pipeline, we optimize the generation for each class by
our conditional generator, which enhances the class distri-
bution as evidenced in Fig. 2. Furthermore, the custom ob-
jective enhances sample quality, as demonstrated by Activa-
tion Atlases [9] in Fig. 1 is superior to common objectives
employed in [23, 54] in Fig. D.III

f(x) = E[f(.)] +
M∑
i=1

ϕi ∗ x′
i (1)

In this work, our key contributions can be enumerated as
below:
• We introduce an efficient class-targeting approach for

model extraction, significantly enhancing the efficacy of
the substitute model across all classes.

• We devise a query-efficient feedback mechanism to train
a generator which facilitates the pipeline scale to higher
dimensional spaces. We demonstrate this through a com-
parative analysis against prior works while being the first

to extract Video Classification models with an acceptable
accuracy and query budget.

• Our algorithm’s versatility is demonstrated across various
settings, including Greybox, BlackBox with all soft la-
bels, BlackBox with top-k & top-1 soft labels, BlackBox
with top-k & top-1 hard labels

We explore the limitations of this approach and offer con-
siderations for using this strategy effectively. To advance
further research in model extraction attacks, we’ve made
our source code publicly available1.

2. Related Work
We have outlined the motivation for this work in the intro-
duction; this section will review the seminal literature re-
lated to each component or domain critical to our study.

2.1. Model Extraction Attacks
Previous efforts in model extraction in Softlabel settings
have focused on computing approximate gradients for back-
propagation objectives [5, 23, 38, 54]. Works such as [47]
extensively evaluate pipelines for Hardlabel settings, estab-
lishing a precedent for real-world model extraction. These
approaches, utilizing varied mechanisms for training the
Generator, share a common goal: to optimize the diver-
gence between the Victim and Substitute acting as a dis-
criminator. However, the high query costs required to ap-
proximate gradients for a single sample using Zeroth Or-
der gradient approximation often limit their performance.
Efforts to train an efficient Generator using an Evolution-
ary Algorithm [4, 28, 43, 44] have demonstrated signifi-
cantly lower extraction accuracy compared to earlier meth-
ods [41]. Meanwhile, initiatives like [56] focus on generat-
ing class-specific samples using minimum decision bound-
aries, which is superior to other approaches based on sam-

1https://github.com/vidmodex/vidmodex

https://github.com/vidmodex/vidmodex


ple efficiency to train the Substitute model. Yet, comput-
ing these samples requires a high number of Victim Model
queries, rendering it impractical in real-world scenarios due
to extensive querying. Drawing from these findings, we aim
to address this trade-off by developing an auxiliary objec-
tive based on SHAP for the generator that is query-efficient
and improves the fidelity of the generated samples, enabling
richer extraction of the Victim model.

2.2. Interpretable AI for GAN, Model Extraction
Research on using Interpretable AI algorithms to train
GANs is limited [39] because, although explanations help in
human interpretation, they have less information than gra-
dients from the target network and discriminator. However,
these methods show promise for black box model applica-
tions, particularly in model extraction [38, 40, 55, 58]. Both
[40, 58] focus on mimicking explanations from the victim
model, which does not perforce improve extraction accu-
racy, and [38] relies on direct gradients, which defeats the
purpose. In [55], GradCam [48] is used for sample aug-
mentation by leveraging saliency maps from the substitute
model to refine the loss function. This method is limited
because GradCam depends on the substitute model’s gradi-
ents, leading to a noisy and unstable training process. De-
spite demonstrating stability in a limited study with pre-
defined surrogate dataset images, the scalability to diverse
real-world objectives remains dubious. We iterate on this
by computing SHAP [49], which are gradient-free and can
be directly computed on the victim model within a specified
max evals budget for each sample. Acquiring SHAP val-
ues from the victim model are costly, but we address this by
learning to estimate SHAP values within an Energy GAN
framework [59] since learning SHAP values [22] is more
feasible than predicting gradients for the victim model.

2.3. Surrogate Dataset and Settings
In this subsection, we examine the use of surrogate datasets
in prior research and the settings employed for model de-
ployment. Many studies, including [28, 47, 54, 55], have
utilized surrogate datasets with varied methodologies for
sample selection. These strategies accelerate the model ex-
traction process but necessitate an understanding of the vic-
tim model’s data distribution, complicating scalability due
to the adverse effects of selecting a poor surrogate dataset as
noted by Truong et al. [53]. With the growth of MLaaS plat-
forms, such as [1, 15, 35, 36], entities can now deploy mod-
els with specific settings including Top-1 and Top-k class
labels, and prediction probabilities for the Top-1 or Top-k
classes. Our analysis adopts these settings and extends to
prediction probabilities for all classes to align with previ-
ous research. We offer a framework for using a surrogate
dataset under a grey box model extraction attack, detailing
the surrogate dataset specifics in Sec. 5.

3. Preliminary
In this section, we introduce SHAP, an Additive explanation
method using Shapley values, focusing on how it helps de-
fine objectives. We use the Partition Explainer [49], which
calculates Shapley values recursively across a feature hier-
archy, forming feature coalitions that result in Owen val-
ues from game theory [31], detailed in Appendix A.1. Fol-
lowing SHAP’s basic principles, we start with the additive
property shown in Eq. (1). In this formula, f is the tar-
get black-box model, M is the input space size, E[f(.)] the
expected value of f over a uniform distribution, and ϕ rep-
resents the Shapley value for the sample x, noted as ϕ(f, x).
xi denotes the ith feature of x, and the mapping between x′

and x is defined by x = h(x′) as outlined in [32, Section 2],
with x′ ∈ [0, 1]M standardized for the algorithms. h(x′) is
a explainer specific mapping function to reconstruct x from
a standardized input space x′.

To generalize across the scenarios outlined in Sec-
tion 2.3, we define our black-box victim model using Equa-
tion (2), which ensures consistent outputs across any top-k
prediction setting. The terms topk probs and topk indices
represent the probability values and corresponding indices
for top-k predictions, respectively. The model produces a
column vector of dimension [0, 1]num classes, displaying a
softmax output for a single class prediction, aligning well
with the intended application within the SHAP framework.

fsl =

topk probs[i] if i ∈ topk indices,
1− sum(topk probs)

num classes− k
otherwise.

(2)

fhl =

{
1/k if i ∈ topk labels,

0. otherwise
(3)

For hard labels, we adhere to the definition in Eq. (3),
which yields a binary output from the target black-box
model. We also explore how, although this approach pro-
vides less information than soft labels, it remains suffi-
ciently informative for computing Shapley values.

With the definition Eq. (1), an approximation under the
local accuracy property given in [32, Section 3] and choos-
ing either function from Eq. (2) or Eq. (3), we derive
Eq. (4a). Representing the variables in the equation as vec-
tors, reformulating ϕ = (ϕ1, . . . , ϕi, . . . )

⊤ as a column
vector and x′ = (x′

1, . . . , x
′
i, . . . )

⊤ as a column vector and
conditioning on specific class id c, we refine it to Eq. (4b).

f(x) = E[f(.)] +
M∑
i=0

ϕi ∗ x′
i (4a)

f(x|c) = E[f(.|c)] + ϕ(f(.|c), x)⊤ ∗ x′ (4b)

Using Eq. (4), we set our objective to enhance sample x
effectiveness by maximizing the class probability of the tar-
get model f(.|c), leading to Eq. (5). Since E[f(.|c)] does



not depend on x, we simplify further by substituting x′,
making the objective linearly proportional to the variable
of interest. We use vector j = (1, 1, . . . , 1)⊤ of size M for
x′ ∈ [0, 1]M to define the bounds 0 ≤ ϕ⊤ ∗ x′ ≤ ϕ⊤ ∗ j or
0 ≥ ϕ⊤ ∗ x′ ≥ ϕ⊤ ∗ j, depending on the sign of ϕ⊤ ∗ x′.
Using ϕ⊤∗j simplifies the objective but introduces some in-
accuracy, focusing on feature contribution over magnitude.
This approach also addresses the issue of exploding gradi-
ents during training, culminating in the objective defined in
Eq. (6).

argmax
x

f(x|c) = argmax
x

ϕ(f(.|c), x)⊤ ∗ x′ (5)

ClassObj = argmax
x

ϕ(f(.|c), x)⊤ ∗ j (6)

Building on previous work on Shap value computation
[49], we use the Partition Explainer E to approximate the
Shap values ϕ. The function E takes as inputs the target
model V , the sample x, and the maximum number of model
evaluations max eval. The approximate Shap value s for
the input is given by Eq. (7).

s = E(V, x,max eval) (7)

Alongside the previously defined objective, we employ
several crucial parameters that influence the accuracy of
the approximations used in Eq. (1). One key param-
eter is max evals: The Partition Explainer efficiently
distributes Shapley value computations across a feature
hierarchy, significantly reducing inference costs in high-
dimensional settings by avoiding M ! inferences and requir-
ing only max evals. Another less influential hyperparam-
eter is masker, defaulting to Gaussian Blur with a kernel
size of 3. Both parameters are tailored to the complexity
and nuances of the target model.

4. Approach
The overall attack setup is well outlined by previous works
[54], [47], with V the Victim black box model, S a sub-
stitute model and A generator G which is responsible for
crafting input samples. While our objective is to learn S
that closely mimics the V . We employ KL divergence [54]
for soft label setting given in Eq. (8a), and employ CrossEn-
tropy Loss [47] for hard label setting given in Eq. (8b) to
optimize S. To optimize G, we use an adversarial loss to
increase the divergence between Student and victim model
[47, 54] which is given by Eq. (9). As we use Conditional
Generator instead, we also specify cT Target class index to
generate samples for a particular class.

Lsl(x) =
∑

i ∈ topk indices

V(x|i) log V(x|i)
S(x|i) (8a)

Lhl(x) = −
∑

i ∈ topk indices

V(x|i) ∗ log(S(x|i)) (8b)

z ∼ N (0, 1); =⇒ argmax
θG

argmin
θS

L(x)
x = G(z, cT );

(9)

We complement our setup with the ClassWise Objective from
Eq. (6). Since the ϕ value from the explainer isn’t differentiable,
we use an estimator P(s|x, cT ) that predicts SHAP values(ϕ)
based on the input(x) and targeted class index(cT ). P , a condi-
tional UNet, ensures predicted SHAP values(ϕ), is in a normal
distribution and consistent with input’s shape, aiding calculation
of the probability over ϕ. As we only obtain an approximate value
of ϕ from E, we use it as the ground truth sgt. Hence sgt is used to
train a differentiable and computationally efficient method to esti-
mate Shap value (P) similar to Jethani et al. [22]. To train P , we
optimize the Mean Absolute Error between P’s SHAP output and
the explainer’s values as per Eq. (11). We apply P(sgt|x, c) as a
mask to minimize prediction errors when sgt is known; otherwise,
we revert to the initial objective in Eq. (10).

ClassObj = argmax
x

∑
E[P(s|x, c)]

= argmax
x

∑
E[P(s|x, c)]⊙ P(sgt|x, c)

(10)

LP =
∑

|sgt − ŝ| ,where ŝ ∼ P(x, c) (11)

Algorithm 1: VidModEx: Data-Free Model Ex-
traction with SHAP and Class-Wise Objectives

Input: Victim model V , Clone model S, Generator
G, explainer E, Shap estimator P , Query
budget NQ, Generator iterations nG, Clone
model iterations nS , Learning rates ηG, ηS ,
ηP , Top-k labels k, Target classes C, Initial
max evaluations max eval, Decay
threshold threshold, Decay schedule
DS = {d1, d2, . . . , dk}

Output: Trained Clone model S and Generator G
1 while NQ > 0 do
2 foreach cT ∈ C do
3 for i = 1 to nG do
4 Sample z ∼ N (0, 1);
5 x = G(z, cT );
6 if max eval ≥ threshold then
7 sgt = E(V, x,max eval);
8 ŝ ∼ P(x, cT );
9 θP ← θP − ηP∇θPLD(sgt, ŝ);

10 ŝ ∼ P(x, cT );
11 θG ← θG − ηG∇θGLG(ŝ, x, cT );

12 for j = 1 to nS do
13 Sample z ∼ N (0, 1);
14 x = G(z, cT );
15 θS ← θS − ηS∇θSLhl or sl(V,S, x);
16 NQ ← NQ− (nS +nG ∗ (1+max eval));
17 if NQ ∈ DS then
18 max eval← max eval

2 ;



Figure 3. Model extraction diagram with additional objectives and SHAP explainers

(a) x - Original input (b) sgt - SHAP GT (c) E[ŝ] - SHAP Pred (d) P(sgt) - P Mask (e) SHAP Energy

Figure 4. Shap values and visualization at each stage of the Pipeline

The complete pipeline is illustrated in Fig. 3 and detailed in Al-
gorithm 1, where the shap estimator P operates akin to an energy-
based discriminator, as detailed in [59]. Unlike typical adversar-
ial settings, P focuses on accurately estimating SHAP values for
generated samples, while G optimizes these samples to enhance
their SHAP values. Consequently, P is termed a discriminator in
this paper, enabling the generator to create rich and class-balanced
samples. Additionally, the probabilistic discriminator incorpo-
rates a mask P(sgt|x, c) to exclude any out-of-distribution sig-
nals or noise during training. SHAP values are normalized be-
tween [−1, 1] to account for their variability from 1 × 10−8 to
1 × 10−11 across different datasets and model scenarios like im-
ages and videos.

Fig. 4 presents visualizations that illustrate data at each pipeline
stage. Fig. 4a shows the initial input to the victim model, us-
ing a substitute image to simplify subsequent image interpretation.
Fig. 4b displays the SHAP value computed with the partition ex-
plainer. Fig. 4c depicts the expected value µ of the discriminator,
denoted as E[P(s|x, c)]. Fig. 4d shows the probability mask sta-
bilizing the initial training phase, computing the probability that
the expected output sgt aligns with the predicted distribution, thus

assessing prediction accuracy relative to the ground truth. Fig. 4e
illustrates the final objective used to train the generator in an en-
ergy gan-like architecture, as specified in Eq. (10). To further con-
cretize the stability of the joint training of estimator P and Clone
model S, we conduct experiments in Sec. 5.2.

5. Experiments
This section assesses our Vidmodex approach in diverse settings,
outlined in Sec. 2.3, using image and video models across datasets
like MNIST [13], CIFAR10, CIFAR100 [26], Caltech101 [27],
Caltech256 [17], ImageNet1K [12] for images, and UCF11 [29],
UCF101 [51], Kinetics 400 [24], Kinetics 600 [7], Something-
Something v2 [16] for videos. These tests evaluate increasing
class complexities, emphasizing high-resolution datasets to show
efficiency in large search spaces. We benchmark primarily against
DFME [54], DFMS-HL [47], and include results from ZSDB3KD
[56], MAZE [23], KnockoffNets [43], and BlackBox Dissector
[55], opting not to replicate other studies since our methods have
surpassed them previously. We also assess max evals’ impact
on the extraction process and learning within the discriminator in
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Figure 5. Plots of the extraction accuracy across different K, for both Softlabel and Hardlabel setting

Sec. 5.2, determining the optimal configuration. An ablation study
on top k settings explores performance variations. Our focus is
on black box model extraction, but we also address the use of a
surrogate dataset (grey box access) and its effects. Results with
top k label availability are analyzed to confirm generalization.
Our detailed qualitative analysis in Appendix Appendix D further
supports our empirical findings.

Experimental setup
DFME and DFMS-HL are integrated into our pipeline as config-
urable approaches, with outlines and scripts provided for result
reproduction in our code base. Our experiments ran on 2 nodes
with 8 x H100 GPUs (80GB), Intel(R) Xeon(R) Platinum 8480C
CPUs (96-cores 4 GHz), and 1.8 TB of RAM, along with a setup
featuring 4 x A100 GPUs (80GB), AMD EPYC 7V13 (64-core
4.8 GHz), and 867 GB RAM. Additionally, tested our scripts on a
modest setup with V100 GPUs (32 GB), ensuring broad repro-
ducibility and ease of development. The high-demand experi-
ments, such as those involving Kin400, Kin600, and Something-
Something-v2, necessitate more robust hardware configurations.

5.1. Results
We present our results for black-box extraction results in
Sec. 5.1.1, and we further analyze the influence of top-k on both
settings; Also present Greybox extraction results. A standard prac-
tice in previous model extraction literature is to use the same archi-
tecture for both the Victim and Clone models to reduce variance in
results that may arise from architectural disparity.

5.1.1. BlackBox Extraction
Our blackbox extraction initially focuses on the SoftLabel Setting,
using class probabilities from the victim model, similar to previ-
ous studies like [56], [23], [43]. As shown in Table 1, we report
accuracies from these methods and our reproduced results from
[47] and [54]. To enable a reproducible comparison, we detail the
training epochs needed to replicate the victim models, addressing
the lack of standardized or pre-trained weights in prior research.
We train the Target victim architecture from scratch on the dataset,
with all configurations, including seeds, documented in our repos-
itory. Both the clone and the victim model use the same architec-

ture to prevent bias from architectural differences.

Method
Target Dataset /
Victim Model

Victim
Train
Epochs

Victim
Acc.%

Clone
Acc.%

Query
Budget

DFME
[54]

MN‡ / RN-18† 500 99.7 92.5 4M
C10‡ / RN-18† 1500 97.5 87.32 10M

C100‡ / RN-34† 3500 76.5 62.15 25M
CT101‡ / EN-B7† 8000 73.2 53.56 70M
CT256‡ / EN-B7† 10500 77.1 32.52 100M
IN1K‡ / EN-B7† 15000 67.3 13.23 120M

DFMS-SL
[47]

MN‡ / RN-18† 500 99.7 95.1 4M
C10‡ / RN-18† 1500 97.5 91.22 10M

C100‡ / RN-34† 3500 76.5 65.04 25M
CT101‡ / EN-B7† 8000 73.2 56.46 70M
CT256‡ / EN-B7† 10500 77.1 38.54 100M
IN1K‡ / EN-B7† 15000 67.3 23.56 120M

Vidmodex

MN‡ / RN-18† 500 99.7 94.6 4M
C10‡ / RN-18† 1500 97.5 94.9 10M

C100‡ / RN-34† 3500 76.5 69.52 25M
CT101‡ / EN-B7† 8000 73.2 68.14 70M
CT256‡ / EN-B7† 10500 77.1 64.25 100M
IN1K‡ / EN-B7† 15000 67.3 48.54 120M

ZSDB3KD
[56]

MN‡ / LN-5† - 99.33 96.54 100M
C10‡ / RN-18† - 82.5 59.46 400M

MAZE
[23]

C10‡ / RN-18† - 92.26 45.60 30M
C100‡ / RN-34† - 82.5 37.20 80M

KnockOff
Nets [43]

C10‡ / RN-18† - 91.56 74.44 8M
CT256‡ / RN-34† - 78.4 55.28 8M

†Model Architecture RN-18: ResNet18; RN-34: ResNet34; EN-B7:
EfficientNet-B7; LN-5: LeNet-5
‡Dataset MN: MNIST; C10: CIFAR10; C100: CIFAR100; CT101: Cal-
tech101; CT256: Caltech256; IN1K: ImageNet1K

Table 1. Comparision of Blackbox Extraction Techniques on Image
Models

We detail the Query Budget, presenting reported values or es-
timates from algorithms like [56]. Our method generally outper-
forms others, except on MNIST where it matches [47] and trails
[56]. Notably, it is 25× more efficient than [56] in Query Budget
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Figure 6. (a) and (b) show GreyBox extraction accuracies; (c) illustrates variation in Discriminator training.

use. Using a uniform Query Budget, we exceed the performance
of [54] and [47]. We note that extraction accuracy declines with
increased dataset difficulty, linked to higher resolution and more
classes. Our method achieves a 16.45% average improvement
over [54], peaking at 35.31%. Comparatively, Vidmodex over
DFMS-SL show improvements of 11.67% and 25.71%, respec-
tively. These metrics underline our approach’s robustness across
various datasets.

Method
Target Dataset /
Victim Model

Victim
Train
Epochs

Victim
Acc.%

Clone
Acc.%

Query
Budget

DFME
[54]

U11‡/VVT† 800 84.96 55.27 70M
U101‡/VVT† 2000 74.1 43.56 200M
K400‡/SwT† 8000 70.8 28.49 350M
K600‡/SwT† 10000 68.4 18.26 420M
SS2‡/SwT† 17500 61.1 11.42 500M

DFMS-SL
[47]

U11‡/VVT† 800 84.96 61.34 70M
U101‡/VVT† 2000 74.1 47.53 200M
K400‡/SwT† 8000 70.8 34.56 350M
K600‡/SwT† 10000 68.4 20.15 420M
SS2‡/SwT† 17500 61.1 16.38 500M

Vidmodex

U11‡/VVT† 800 84.96 72.64 50M
U101‡/VVT† 2000 74.1 68.23 200M
K400‡/SwT† 8000 70.8 57.45 350M
K600‡/SwT† 10000 68.4 51.62 420M
SS2‡/SwT† 17500 61.1 37.63 500M

†Model Architecture VVT: ViViT-B/16x2; SwT: Swin-T;
‡Dataset U11: UCF-11; U101: UCF-101; K400: Kinetics-400; K600:
Kinetics-600; SS2: Something-Something-v2;

Table 2. Comparision of Blackbox Extraction Techniques on Video
Models

For video victim models, we use a similar Softlabel setting
with probability predictions for all classes from the victim model.
We’ve chosen ViViT-B/16x2 [3] and Swin-T [30] for reproducibil-
ity due to their popularity and ease of use of the provider li-
brary. We maintain a uniform Query Budget across all methods
and present the training epochs and accuracy of the victim models.
Importantly, we avoid using pre-trained weights for these models
to ensure fair comparisons, as the clone models also lack access to

pre-trained datasets or weights. As shown in Table 2, our method
significantly outperforms DFME and DFMS-SL, with the dispar-
ity increasing as the complexity of the models rises.

Our approach consistently outperforms [54] and [47] in video
model extraction. Specifically, Vidmodex achieves a mean im-
provement of 26.11% and a maximum improvement of 33.36%
over [54]. And 21.52% and 31.47% over [47] respectively. No-
tably, these are achieved with a Query Budget that is lower or equal
to the other two methods.

5.1.2. Impact of TopK Setting on Soft and Hardlabel
extraction.

We explore scenarios where top-k labels facilitate model extrac-
tion, affirming our pipeline’s real-world relevance. Adhering to
definitions in Eq. (2) for softlabel and Eq. (3) for hardlabel ensures
consistent analysis across scenarios. We do not employ specialized
methods for handling top-k labels beyond these definitions. This
study aims to demonstrate that computing SHAP values and intro-
ducing the SHAP-based objective does not negatively impact per-
formance, even with fewer labels returned. As illustrated in Fig. 5,
we plot mean clone accuracy for each value of K, with variability
indicated by standard deviations. For softlabel extraction, we re-
port on image and video models across K ∈ {1, 3, 5, 10,ALL},
while for hardlabel, K ∈ {1, 3, 5, 10}; the ’All’ category is ex-
cluded in hardlabel as it offers no added information. We omit
K = 10 for datasets like MNIST, CIFAR10, and UCF11 in hardla-
bel scenarios, where the total class count makes hardlabels redun-
dant. Fig. 5a and Fig. 5b show an upward trend in extraction ac-
curacy as more label information becomes available. Conversely,
Fig. 5c and Fig. 5d display a downward trend in hardlabel set-
tings, where additional labels decrease useful information. These
trends align with the victim model’s entropy in each scenario. De-
tailed experiment configurations are catalogued in the Appendix:
Tab. B.I, Tab. B.II, Tab. B.I, and Tab. B.II detail each model type
and label setting for various K values.

5.1.3. Grey Box extraction
We also evaluate our approach’s efficacy using a surrogate dataset.
While enhancing grey box accuracy is not our main focus, these
tests ensure our SHAP-based objective doesn’t negatively impact
the generator’s learning when using a proxy dataset. Instead of
detailing the selection methodology for an appropriate surrogate



dataset, we use parts of established datasets. Specifically, we in-
corporate ImageNet-22K [46] for image models, and Kinetics-700
[8] and CHARADES [50] for video models. A shuffled subset is
used instead of targeted subclasses.

Experimental details and configurations are detailed in Ta-
ble B.III, with results shown in Fig. 6. Our analysis covers three
methods: [54], [47], and ours in both SoftLabel and HardLabel
settings. We select the best top k setting given All for SoftLabel
settings and only top-1 labels in HardLabel settings.

Our method remains robust and effective, especially in Soft-
Label image models, showing a mean improvement of 15.23%
over DFME and 9.24% over DFMS-SL, peaking at 32.99% and
21.98%. In HardLabel image settings, we see average improve-
ments of 15.15% over DFME and 9.24% over DFMS-HL, with
highs of 29.14% and 14.16%. Video model extractions un-
der SoftLabel conditions show enhancements of 19.04% over
DFME and 12.65% over DFMS-SL, with top gains of 28.29% and
18.05%. HardLabel settings reveal our method surpassing DFME
by 15.34% and DFMS-HL by 9.80%, with maximum improve-
ments of 24.26% and 19.67%.

5.2. Ablation study on Discriminator Learning
In this section, we examine the impact of the max eval parame-
ter on SHAP value computations, crucial for training the discrim-
inator P , as detailed in Eq. (11). By increasing max eval, we
enhance the granularity of SHAP values, thereby improving accu-
racy as discussed in Eq. (1) and [32]. Initially set high, max eval
is progressively reduced during the training, akin to learning rate
decay strategies. Our CIFAR100 experiments using a ResNet-18
model (see Appendix. C.1 for Fig. 6c details) demonstrate that the
hybrid decay strategy, while slightly underperforming compared
to constant high values, significantly outperforms the lowest set-
ting and maintains lower variance in validation loss. Verifying the
viability of an efficient and effective training process.

6. Limitations
While we aim to provide a query-efficient and interpretable ap-
proach for model extraction, we have achieved success with the
limited experiments we have performed and presented. In adver-
sarial contexts, such methods can also serve as a strategic probing
tool to infer model behavior without full replication. The approach
can be viewed as a dissector-style attack due to the SHAP value
computation: even if the approach fails to fully replicate the tar-
get model, it still reveals local attribution signals from the black
box, offering insights into decision boundaries as studied in Ap-
pendix D.3. This positions our work within a broader family of
adversarial probing techniques studied in black-box security re-
search.

A major limitation of the study is that we do not evaluate Vid-
ModEx on commercial MLaaS providers, as these platforms of-
ten incorporate proprietary defense mechanisms such as rate lim-
iting, randomized responses, model fingerprinting, or obfusca-
tion of prediction confidences[41], adding complexity that is dif-
ficult to simulate precisely. Our experiments are conducted un-
der a standardized and controlled black-box interface to match the
vanilla setup. While there are known workarounds to bypass[10]
such defenses in real-world scenarios, integrating them is be-

yond the scope of this study. We anticipate that once access is
normalized, VidModEx would remain competitive with—or out-
perform—existing model extraction techniques under comparable
query budgets.

Another limiting factor in evaluating the pipeline on such
MLaaS platforms is the lack of knowledge about the target dataset
used to train the model or the absence of a surrogate dataset that
approximates its distribution. Without this information, bench-
marking the cloned model remains a non-trivial task. This limits
the reliability of quantitative evaluation metrics unless challenges
such as unsupervised task inference or dataset characterization are
explicitly addressed [33, 34, 52].

7. Future Work

While VidModEx leverages SHAP-based objectives to guide the
generation process, the outputs of the generator are not constrained
to be visually interpretable by humans. Particularly in high-
dimensional or fine-grained datasets, the generated samples may
lack semantic coherence or exhibit abstract patterns that resist hu-
man interpretation. Although sample visualizations are included,
along with activation atlases, they remain insufficient for drawing
systematic insights into the generator’s learning process.

The optimization structure of our approach builds upon estab-
lished generator–teacher–student training paradigms used in prior
model extraction works. While the integration of SHAP-based ob-
jectives is theoretically presented in Appendix A.1, the joint opti-
mization of the generator, SHAP estimator, and substitute model
introduces complex interactions that are not explicitly modeled,
and we do not provide formal convergence guarantees for the over-
all system. Our empirical findings suggest stable training dynam-
ics, with the improvements in extraction performance largely at-
tributable to enhanced data representation driven by SHAP opti-
mization. We are keen to see future works that extend or address
these limitations and are open to exploring them in future itera-
tions of this research direction.

8. Conclusion

In this study, we enhanced the DataFree model extraction
framework by integrating Explainable AI algorithm. We tested
our approach in real-world scenarios with both hard and soft label
settings across various top-k outputs, aligning with typical MLaaS
constraints. Our research extends model extraction to video
classification models, observing significant improvements. We
conducted quantitative and qualitative analyses to assess SHAP
values’ impact, noting enhanced extraction capabilities. We
detailed our pipeline’s implementation and explored additional
hyperparameters to aid reproducibility. While applicable to audio,
text, and tabular data, this paper focuses on video models to
substantiate our claims. Future work could develop general-
ized techniques for larger models with billions of parameters,
aiming for cost-effectiveness. Our primary goal is to enrich
awareness of the potential impacts on the MLaaS industry
and emphasize the importance of understanding associated risks.
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Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video
vision transformer. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 6836–6846,
2021. 7

[4] Antonio Barbalau, Adrian Cosma, Radu Tudor Ionescu, and
Marius Popescu. Black-box ripper: Copying black-box mod-
els using generative evolutionary algorithms. Advances in
Neural Information Processing Systems, 33:20120–20129,
2020. 2

[5] James Beetham, Navid Kardan, Ajmal Mian, and Mubarak
Shah. Dual student networks for data-free model stealing.
arXiv preprint arXiv:2309.10058, 2023. 1, 2

[6] Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvi-
jotham, Thomas Steinke, Jonathan Hayase, A Feder Cooper,
Katherine Lee, Matthew Jagielski, Milad Nasr, Arthur
Conmy, et al. Stealing part of a production language model.
arXiv preprint arXiv:2403.06634, 2024. 1

[7] Joao Carreira, Eric Noland, Andras Banki-Horvath, Chloe
Hillier, and Andrew Zisserman. A short note about kinetics-
600. arXiv preprint arXiv:1808.01340, 2018. 5

[8] Joao Carreira, Eric Noland, Chloe Hillier, and Andrew Zis-
serman. A short note on the kinetics-700 human action
dataset. arXiv preprint arXiv:1907.06987, 2019. 8

[9] Shan Carter, Zan Armstrong, Ludwig Schubert, Ian John-
son, and Chris Olah. Activation atlas. Distill, 2019.
https://distill.pub/2019/activation-atlas. 2

[10] Yanjiao Chen, Rui Guan, Xueluan Gong, Jianshuo Dong,
and Meng Xue. D-dae: Defense-penetrating model extrac-
tion attacks. In 2023 IEEE Symposium on Security and Pri-
vacy (SP), pages 382–399, 2023. 8

[11] Covariant. Rfm-1: Robotics foundation model. https:
//covariant.ai/rfm/, 2024. Accessed: 2024-05-22.
1

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 5

[13] Li Deng. The mnist database of handwritten digit images for
machine learning research. IEEE Signal Processing Maga-
zine, 29(6):141–142, 2012. 5

[14] edenai. Eden ai. https://www.edenai.co/, 2024.
Accessed: 2024-05-22. 1

[15] Google Cloud. Get predictions for video classification with
vertex ai. https://cloud.google.com/vertex-
ai/docs/video-data/classification/get-
predictions#output_format, 2021. Accessed:
2024-05-30. 3

[16] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,

Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz
Mueller-Freitag, et al. The” something something” video
database for learning and evaluating visual common sense.
In Proceedings of the IEEE international conference on com-
puter vision, pages 5842–5850, 2017. 5

[17] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech
256, 2022. 5

[18] Dong Han, Reza Babaei, Shangqing Zhao, and Samuel
Cheng. Exploring the efficacy of learning techniques in
model extraction attacks on image classifiers: A compara-
tive study. Applied Sciences, 14(9):3785, 2024. 1

[19] Xuanli He, Lingjuan Lyu, Qiongkai Xu, and Lichao Sun.
Model extraction and adversarial transferability, your bert is
vulnerable! arXiv preprint arXiv:2103.10013, 2021. 1

[20] Hongsheng Hu, Zoran Salcic, Lichao Sun, Gillian Dobbie,
Philip S Yu, and Xuyun Zhang. Membership inference at-
tacks on machine learning: A survey. ACM Computing Sur-
veys (CSUR), 54(11s):1–37, 2022. 1

[21] Hugging Face. Autotrain – hugging face. https://
huggingface.co/autotrain, 2024. Accessed: 2024-
05-22. 1

[22] Neil Jethani, Mukund Sudarshan, Ian Connick Covert, Su-
In Lee, and Rajesh Ranganath. Fastshap: Real-time shapley
value estimation. In International Conference on Learning
Representations, 2021. 3, 4

[23] Sanjay Kariyappa, Atul Prakash, and Moinuddin K Qureshi.
Maze: Data-free model stealing attack using zeroth-order
gradient estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13814–13823, 2021. 2, 5, 6

[24] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 5

[25] Dmitry Kazhdan, Zohreh Shams, and Pietro Lio. Marleme:
A multi-agent reinforcement learning model extraction li-
brary. In 2020 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2020. 1

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Department of Computer
Science, University of Toronto, 2009. 5

[27] Fei-Fei Li, Marco Andreeto, Marc’Aurelio Ranzato, and
Pietro Perona. Caltech 101, 2022. 5

[28] Zijun Lin, Ke Xu, Chengfang Fang, Huadi Zheng, Aneez
Ahmed Jaheezuddin, and Jie Shi. Quda: query-limited data-
free model extraction. In Proceedings of the 2023 ACM
Asia Conference on Computer and Communications Secu-
rity, pages 913–924, 2023. 2, 3

[29] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing re-
alistic actions from videos “in the wild”. In 2009 IEEE con-
ference on computer vision and pattern recognition, pages
1996–2003. IEEE, 2009. 5

[30] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3202–3211, 2022. 7

https://aws.amazon.com/rekognition/video-features/
https://aws.amazon.com/rekognition/video-features/
https://aws.amazon.com/computer-vision/
https://aws.amazon.com/computer-vision/
https://covariant.ai/rfm/
https://covariant.ai/rfm/
https://www.edenai.co/
https://cloud.google.com/vertex-ai/docs/video-data/classification/get-predictions#output_format
https://cloud.google.com/vertex-ai/docs/video-data/classification/get-predictions#output_format
https://cloud.google.com/vertex-ai/docs/video-data/classification/get-predictions#output_format
https://huggingface.co/autotrain
https://huggingface.co/autotrain
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