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Abstract

Accurate prediction of nearby road actors’ future trajecto-
ries is crucial for autonomous vehicles. With the develop-
ment of foundational models, autonomous driving trajec-
tory prediction has seen significant improvements. How-
ever, these neural network-based methods are vulnerable to
adversarial attacks, challenging the reliability and safety of
predictions. Previous attack methods focused on constraint
spaces and objective functions, generating adversarial tra-
jectories via perturbations in the explicit space followed by
further optimization. However, these methods overlook the
threat model’s potential. To fully leverage the model’s op-
timization, we propose a novel adversarial attack method,
EL-Attack, which emphasizes multi-space collaborative op-
timization in both explicit and latent spaces. The frame-
work first uses a spatio-temporal attention module to extract
semantic representations of the trajectory’s spatiotemporal
context, then builds a threat model based on an adversarial
autoencoder. In the explicit space, we introduce an inter-
active risk field based on the autonomous vehicle’s driv-
able area to guide the target vehicle’s trajectory. In the
latent space, we apply semantic-level perturbations on la-
tent vectors and regularize them, enhancing attack target-
ing and stealthiness. We conducted experiments and eval-
uations on the Argoverse dataset and a virtual-real testing
platform. In terms of effectiveness, compared to the best -
performing baseline, our method improves the attack suc-
cess rate by 4.0% and 15.2% on the VectorNet and TNT
models respectively. we also tested in scenarios such as
straight roads, curves, and intersections for real-world val-
idation and transferability.

1. Introduction

Autonomous driving trajectory prediction plays a critical
role in enabling safe motion planning for automated vehi-
cles [8]. Recent advances in deep neural networks have

significantly improved prediction accuracy [9], yet these
models remain vulnerable to adversarial perturbations [14].
Such attacks can cause severe prediction deviations [3], un-
derscoring the need for robust trajectory prediction frame-
works [1].

An ideal adversarial trajectory must balance stealthi-
ness and aggressiveness. While stealthiness ensures com-
pliance with physical constraints, aggressiveness induces
safety-critical reactions. Prior methods often focus on
complex constraints but overlook threat model sophistica-
tion [14]. Explicit-space perturbations risk violating traffic
rules, requiring post-smoothing that undermines attack re-
alism. Moreover, traditional objectives like Euclidean dis-
tance fail to capture directional context [11].

To address these challenges, we propose EL-Attack, a
novel framework integrating multi-space optimization. Our
spatiotemporal attention module captures real-world rules
[9], while an adversarial autoencoder (AAE) forms the
threat model [1]. In explicit space, an interaction risk field
guides trajectories into risk area [8], while latent-space per-
turbations leverage semantic disentanglement [13]. This
dual-space approach avoids heuristic constraints and en-
hances both stealthiness and attack precision [4]. Our con-
tributions are as follows:

• We propose EL-Attack, introducing a collaborative opti-
mization framework that utilizes AAE-based threat mod-
eling across explicit and latent spaces.

• We design a spatiotemporal attention perception module
to capture real-world trajectory semantics and contextual
interactions.

• We present the concept of an interaction risk field to en-
hance attack effectiveness by guiding trajectories into risk
regions.

• We apply semantic-level perturbations in the latent space
under different orthogonal modes, improving attack
stealthiness and precision.



Figure 1. two examples of adversarial attack scenarios. (a)
presents two major drawbacks of existing methods: Firstly, the
adversarial trajectory with poor stealthiness ( the red trajectory )
is likely to be identified as dangerous driving behavior by the sys-
tem. Secondly, the overly simplistic optimization objective leads
to ineffective attacks ( the blue trajectory in (a) ). (b) demonstrates
the advantages of our method. The adversarial trajectory conforms
to real-world rules and has high stealthiness ( the purple trajectory
), and it can effectively prompt the victim vehicle to take safety
responses ( the blue trajectory in (b) ).

2. Related Works

Trajectory Prediction Model. With the rapid develop-
ment of deep neural networks, deep learning-based trajec-
tory prediction technology has become a research hotspot
in the field of autonomous driving. Such methods use the
historical spatial coordinates of agents as the basic input,
and combine multi-dimensional information such as map
semantic features, physical motion constraints, and interac-
tion relationships between agents, significantly improving
the prediction accuracy.

Among them, VectorNet[6] proposed a hierarchical
graph neural network architecture. It aggregates the spa-
tial information of vectorized map elements and trajectories
through local subgraphs, then models high-order seman-
tic relationships using a global interaction graph, and in-
troduces a node completion task to enhance context under-
standing. It achieves higher performance with fewer model
parameters on the Argoverse dataset. The TNT[16] frame-
work, innovatively, decomposes trajectory prediction into
three stages: discrete target prediction, conditional trajec-
tory generation, and trajectory scoring and selection. By
explicitly modeling targets, it captures multi-modal inten-
tions, avoiding the interpretability issues and sampling de-

pendence of traditional latent variable models, and outper-
forms previous methods in both vehicle and pedestrian tra-
jectory prediction tasks.

Although these models perform excellently on standard
test sets, existing research shows that when facing adversar-
ial attacks, the prediction accuracy of these models may still
significantly decline due to input perturbations. Therefore,
this study selects these two representative architectures for a
systematic evaluation, aiming to reveal their vulnerabilities
in adversarial environments.

Adversarial Attacks in Trajectory Prediction. Deep
learning models are generally vulnerable to adversarial at-
tacks. In the field of autonomous vehicles, a lot of research
has focused on the impact of attacks on the perception mod-
ule. In recent years, adversarial attacks on trajectory predic-
tion models have received extensive attention.

Among them, Zhang et al. [15] were the first to propose
a search-based attack method. By imposing hard constraints
such as speed and acceleration, they verified the robustness
of the model and clarified the threat of adversarial attacks
to prediction safety. Cao et al. [4] designed a ”determinis-
tic attack” for probabilistic generative models. By replac-
ing random sampling with maximum likelihood samples,
they eliminated the randomness of the attack and signifi-
cantly improved the attack effect on conditional Gaussian
prior models. Cao et al. [3] further constructed a two-stage
framework. First, they densified sparse trajectory points to
calculate dynamic parameters, and then used the Projected
Gradient Descent (PGD) method to generate adversarial tra-
jectories that conform to kinematic constraints, enhancing
the physical rationality of the attack. Tan et al. [12] pro-
posed a targeted attack method named TA4TP. By quanti-
fying prediction bias through an objective function, it can
accurately mislead specific driving behaviors such as lane
changing and steering.

However, existing attack methods often focus on the
design of the constraint space and objective function of
the threat model, while ignoring the potential of the threat
model itself. Our method constructs a threat model based
on the adversarial autoencoder architecture. It maps the tra-
jectory features containing real-world rules and lane envi-
ronment information to the latent space. By implementing
semantic-level perturbations, the generated adversarial tra-
jectories inherently possess both aggressiveness and real-
world stealthiness.

3. Problem Formulation
Trajectory Prediction: The trajectory prediction task aims
to predict the future trajectories of various agents in a scene
based on historical trajectory data and relevant environmen-
tal information. The specific definition is as follows:

Given N agents in a scene, the H historical trajectories
of each agent i at time t are Xi = {st−H+1

i , . . . , sti}, and



Figure 2. An overview of our adversarial attack method.

the ground truth of its future trajectory for the subsequent L
time steps is Yi = {st+1

i , . . . , st+L
i }. Among them, sτi rep-

resents the state of agent i at time τ , including information
such as position, velocity, and heading. At the same time,
the environmental context information C of the scene (such
as high-definition maps, etc.) is provided. The goal of the
trajectory prediction model is to predict the state sequence
of each agent i for the next L time steps, that is, the future
trajectory Ŷi = {ŝt+1

i , . . . , ŝt+L
i }.

Mathematically, the trajectory prediction model can be
expressed as a function F : X × C → Ŷ , where X =
{X1, . . . ,XN}, C is the context information of the scene,
and Ŷ = {Ŷ1, . . . , ŶN} is the predicted future trajectory.
The model learns the mapping relationship between histor-
ical trajectories and context information, and minimizes the
error between the predicted trajectory and the true future
trajectory, that is, minF L(Y, Ŷ).

Attack Model: The threat model aims to mislead the
trajectory prediction model by applying a small perturba-
tion δ to the input data, generating adversarial samples. In
a white-box attack, the attacker uses gradient information
to optimize the perturbation, while in a black-box attack,
adversarial samples are generated through model queries.
The attacker’s objective is to maximize the prediction error,
expressed as:

max
δ

L(F(X + δ, C),Y) (1)

where L is the loss function that measures the error be-
tween the predicted trajectory Ŷ and the true future trajec-
tory Y , and δ is the perturbation applied by the attacker,
which satisfies the constraint conditions (such as the Lp

norm constraint) to ensure the stealthiness of the adversarial
samples.

4. Method

4.1. overview

Adversarial trajectory generation must balance stealthiness
and aggressiveness. However, existing methods relying
solely on explicit space perturbations struggle to achieve
this balance and fail to fully exploit the potential of the
threat model. To address these challenges, we redefine
the adversarial trajectory generation task as a constrained
vehicle trajectory reconstruction problem and propose EL-
Attack, a novel method that emphasizes multi-space collab-
orative optimization across explicit and latent spaces. Our
framework takes as input {XTA,YAV ,YTA, C}, represent-
ing the TA vehicle’s historical trajectory, the ground truth
future trajectories of the AV and TA vehicles, and envi-
ronmental context information, respectively. The spatio-
temporal perception module extracts trajectory features us-
ing a feature extractor [10] and attention mechanism, cap-
turing lane and temporal context. In the explicit space, we
introduce an interaction risk field that models the AV’s driv-
able area, guiding the TA’s future trajectory to maximize
its disruptive effect. In the latent space, we employ an ad-
versarial autoencoder (AAE) to map trajectory features to
a disentangled latent space. Through semantic-level pertur-
bations on orthogonal latent vectors and distribution regu-
larization, EL-Attack enhances both the targeting precision
and stealthiness of adversarial trajectories. The perturbed
latent vectors are then decoded back to generate realistic
adversarial trajectories.

Compared to traditional attacks, EL-Attack offers dis-
tinct advantages: (1) Enhanced Stealthiness: By captur-
ing spatio-temporal correlations, the generated trajectories
align with real-world traffic conditions, reducing detectabil-
ity. (2) Improved Targeting: Semantic-level perturbations in
the latent space enable precise and effective attacks. (3) Re-



alism Maintenance: The AAE’s latent space regularization
ensures physical plausibility and rule compliance. (4) At-
tack Effectiveness: The interaction risk field misguides the
AV’s prediction module, increasing the attack’s success rate
and impact on autonomous driving systems.

4.2. Interactive Perception of Spatio-temporal Con-
text

Compared to image reconstruction tasks, adversarial trajec-
tory generation for attacking autonomous driving prediction
models is more complex. Vehicle trajectories must maintain
spatio-temporal coherence, follow latent logical rules, and
adapt to road environments, making single-feature model-
ing insufficient. Additionally, identifying which historical
trajectory features significantly impact future predictions is
crucial. To address this, we introduce a spatio-temporal in-
teractive perception module that provides high-quality tra-
jectory features by integrating environmental and tempo-
ral context. This module consists of a feature extractor
fe [10], which employs one-dimensional dilated convolu-
tion to encode trajectory embeddings and a graph network
to model vehicle-lane interactions. Furthermore, a spatio-
temporal perception attention mechanism emphasizes the
influence of historical trajectories on future predictions,
enhancing the threat model’s ability to capture complex
spatio-temporal relationships. The mathematical formula-
tion of this module is as follows:

XST = α ·Attn[fe(XTA, C),YTA,YTA]+

(1− α) ·Attn[fe(XTA, C),YAV ,YAV ]
(2)

Among them, α is a weight coefficient, fe(XTA, C) is
the interactive representation containing lane context out-
put by the feature extractor, XST is the output after spatio-
temporal interaction, Attn[a, b, c] is the spatio-temporal at-
tention, where a is the query, b is the key, and c is the value.

4.3. Enhanced Optimization of Interaction Risk in
the Explicit Space

Traditional adversarial attack methods often rely on Eu-
clidean distance or lateral deviation as optimization objec-
tives, which fail to accurately ensure attack effectiveness.
To address this, we introduce the concept of an interaction
risk field Ω, representing the AV’s safe and drivable area. As
can be seen from the Figure 1, When other vehicles’ trajec-
tories enter this field, the AV’s drivable space is compressed,
triggering safety responses like braking or lane changing.
Our objective is to generate adversarial trajectories that mis-
lead the AV into falsely perceiving a threat, resulting in er-
roneous decisions. To simplify modeling, we designate a
point on the lane’s centerline ahead of the AV as the risk
centroid, representing the field. As shown in the Figure 2,

our threat model uses the spatio-temporally interacted vehi-
cle trajectory XST as input to generate an adversarial tra-
jectory X ′

TA. This, in turn, produces the crafted prediction
trajectory ŶTA, guided by explicit space optimization ob-
jectives:

Lreg = ∥XTA −X ′
TA∥2 (3)

Latt = β1 · ∥YTA−ŶTA∥2+β2 ·
1

L

L∑
t=1

ωt∥rt− ŷt∥2 (4)

Among them, Lreg represents the regression loss for tra-
jectory reconstruction, while Latt is the attack loss. The
core function of Latt is to ensure the effectiveness of the
attack. β serves as a weight coefficient, and L denotes the
total number of future time steps. ωt is the weight coeffi-
cient that decays gradually with the time step t. This design
aims to guide the trajectory of the TA vehicle in the rela-
tively near future into the risk field. Here, r and ŷ corre-
spond to the risk centroid and the predicted trajectory point
at the current time step, respectively.

Through such a design, the interaction risk field Ω is
fully utilized in the explicit space, which enhances the ef-
fect of adversarial attacks and optimizes the overall attack
strategy.

4.4. Adversarial Guidance of Latent Vectors in the
Latent Space

To effectively process vehicle trajectory features contain-
ing rich spatio-temporal context and complex real-world
rules, we construct a threat model based on an Adversar-
ial Autoencoder (AAE) architecture and introduce the con-
cept of the latent space. This architecture consists of an en-
coder and a decoder: the encoder maps high-dimensional
semantic features to a low-dimensional latent space and
decouples them into latent vector features in different or-
thogonal modes. The longitudinal feature zlon is repre-
sented as a one-dimensional vector that models the time in-
terval of the vehicle passing a given point, reflecting dy-
namic interactions in the longitudinal direction, and fol-
lows a log-normal distribution. The lateral feature zlat is
a three-dimensional vector modeling vehicle steering inten-
tions for going straight, turning left/leftward, and turning
right/rightward, following a categorical distribution. Re-
maining semantic features that are challenging to model ex-
plicitly are represented as zgauss, which follows a Gaussian
distribution. The decoder then maps these decoupled latent
vectors back to the explicit space to generate adversarial tra-
jectories.

Our key innovation lies in performing semantic-level
perturbations on the latent vectors within different orthogo-
nal modes, thereby precisely misleading the AV’s trajectory



prediction module. For example, perturbing the longitudi-
nal features can interfere with the prediction module’s es-
timation of the TA vehicle’s speed and following distance.
The perturbation process is formally expressed as follows:

z′lon = zlon + ϵlog,

z′guass = zguass + ϵguass,

z′lat = zlat + ϵcat

(5)

Among them, ϵlog and ϵguass are the noise sampled from
the Gaussian space for corresponding dimensions, which
are respectively used to perturb the longitudinal features and
the remaining features of the latent space. Innovatively, we
scale the perturbation standard deviation of the noise based
on the current speed of the TA vehicle and its relative dis-
tance to the AV vehicle. Additionally, we perform threshold
truncation on the perturbed latent variables to prevent exces-
sive perturbation. For ϵcat, we perturb the driving intention
of the TA vehicle according to the azimuth of the TA rela-
tive to the AV risk centroid, so as to increase the probability
that the TA vehicle drives towards the AV risk area.

The discriminator is used to identify and regularize the
perturbed latent vectors to a specific distribution, ensuring
that the generated adversarial trajectories conform to the
physical laws of the real world and maintain a high level of
stealthiness. Our optimization definition in the latent space
is as follows:

LE =
1

m

m∑
i=1

log(1−Di(E(XST ))), (6)

LDi
= logDi(si) + log(1−Di(E(XST ))), (7)

where m is the number of decoupled latent vectors, XST

is the Spatio-Temporal trajectory feature, s is a sample from
the distribution corresponding to a certain latent vector, and
E and D represent the encoder and the discriminator, re-
spectively.

5. Experiment
In the experimental section, we primarily address three re-
search questions: the enhanced effectiveness of EL-Attack
compared to baseline methods, the physical realism of the
adversarial trajectories generated by this approach, and
the performance of these adversarial examples on real au-
tonomous vehicles. We provide a detailed account of the
experimental setup and results, along with a corresponding
analysis of these results.

5.1. Training Setup
Our framework is based on the adversarial autoencoder
architecture. During the training process, the Argoverse

dataset is used to train the parameters, and the VectorNet
model is utilized to predict the future trajectories of the TA
vehicles after being attacked. It is worth noting that the op-
timization objectives in the explicit space are designed to
update the entire framework, while those in the latent space
are only used to update the threat model. In the inference
stage, by leveraging the pre-trained weights, this method
can not only be applied to datasets other than the training set
but also launch effective attacks on other prediction models.

5.1.1. Victim Model
The victim models include VectorNet, TNT, and Traj-
LLM[7], all of which have been pre-trained on the Argo-
verse dataset. VectorNet and TNT each represent signifi-
cant paradigms in trajectory prediction: graph-based inter-
action modeling and goal-driven prediction generation, re-
spectively. VectorNet provides a robust tool for trajectory
prediction due to its efficient geometric modeling and com-
plex interaction comprehension capabilities. Meanwhile,
TNT enhances the accuracy and reliability of trajectory pre-
diction through a goal-driven multimodal prediction strat-
egy. Our previous work, Traj-LLM, leverages the powerful
semantic understanding capabilities of large language mod-
els, incorporating sparse context encoding and lane-aware
probabilistic learning, thereby enhancing scene awareness
and interaction modeling in trajectory prediction. Our base-
line algorithms include Search[15], Search*[3], and SA-
Attack[14], all of which are validated trajectory prediction
attack methods. In accordance with the characteristics of
the victim models, we preprocess the inputs of the baseline
algorithms in our approach.

5.1.2. Evaluation Metrics
To comprehensively assess the effects and characteristics of
adversarial attack methods on trajectory prediction models,
this study defines three key evaluation metrics[5]: Success
Rate (SR), Violation Rate (VR), and Dangerous Appear-
ance Rate (DAR), facilitating systematic evaluation from
the aspects of attack success rate, trajectory physical feasi-
bility, and stealthiness. Additionally, we evaluate the accu-
racy and safety of predicted trajectories from victim mod-
els using Average Displacement Error (ADE), Final Dis-
placement Error (FDE), and Off-road Rate (ORR). Beyond
the assessment of effectiveness, we utilize Dynamic Time
Warping (DTW) to evaluate the realism of the crafted his-
torical trajectories in the physical world.

5.2. Results and Analysis of Adversarial Attack Ex-
periments

5.2.1. Attack Effectiveness
To evaluate attack effectiveness, we conducted comparative
experiments on robust trajectory prediction models, Vec-
torNet and TNT, as well as the latest algorithm Traj-LLM.
The results, summarized in Table 1, show that our method



Table 1. Comparative Experiments on Adversarial Attacks We conducted 250 validation tests on baseline methods using our proposed
approach with the TNT and VectorNet trajectory prediction models.

Victim Model Method ADE(↑) FDE(↑) ORR(↑) VR(↓) SR(↑) DAR - 1.0(↓)

VectorNet
Search 2.34 4.78 10.8% 62.4% 49.6% 89.6%

Search* 1.88 3.89 11.2% 0% 47.2% 57.6%
SA-attack 4.23 4.91 14.0% 0% 85.2% 21.2%

Ours 4.77 5.01 14.4% 0% 89.2% 6.0%

TNT
Search 2.47 4.89 8.4% 14.8% 11.6% 52.4%

Search* 1.93 4.26 6.4% 0% 15.6% 22.0%
SA-attack 3.41 6.97 10.4% 0% 72.4% 12.0%

Ours 4.24 7.34 11.6% 0% 87.6% 3.2%

Traj-LLM w/o attack 1.88 2.94 0% 0% - 0%
w/ attcak 3.11 4.23 7.6% 0% 41.6% 0%

Figure 3. Examples of Adversarial Sampling for Attack Ve-
hicles This figure illustrates the impact of adversarial trajectories
(green points) on the victim trajectory prediction model of an au-
tonomous vehicle (left sample), induced by crafted historical tra-
jectories (red points) of an attack vehicle (right sample). The blue
and yellow-green points represent the original historical trajectory
and benign future trajectory, respectively.

achieves near-optimal performance on ADE, FDE, and SR.
This is attributed to its ability to exploit AV-TA interactions
and generate adversarial behaviors through adversarial la-
tent values.

In the attack tests against the VectorNet and TNT mod-
els, our method demonstrates unique advantages. Com-
pared with the TNT model, our method has a more sig-
nificant attack effect on the VectorNet model. This result
directly reflects that the TNT model is much more robust
than the VectorNet model in resisting adversarial attacks.
However, it is remarkable that even when facing a highly

robust model like TNT, our attack method can still main-
tain a high success rate. It is worth emphasizing that this
success rate is 15.2% higher than that of the current state-
of-the-art speed-optimization-based attack models. More-
over, in terms of the key indicator DAR for measuring the
effectiveness of adversarial attacks, our method far exceeds
other attack methods. This outstanding performance fully
demonstrates that the adversarial trajectories generated by
our method have strong concealment and can effectively
avoid being identified as dangerous driving behavior by
monitoring systems, further highlighting the great advan-
tages of our method in practical applications.

We also applied the proposed algorithm to attack the lat-
est trajectory prediction model Traj-LLM, which is based
on large language models, and experimental data showed
significant attack effectiveness. The Traj-LLM model has
a complex structure, incorporating several robust modules
for mining latent information. We found that, although the
attack methods are effective, their attack success rate and
impact on trajectory anomalies are both lower than those
for VectorNet and TNT. This indicates that the pre-trained
large language model and attention fusion mechanism in-
deed uncover underlying patterns of trajectory prediction;
concurrently, the good attack success rate and significantly
improved FDE and ADE metrics further validate the effec-
tiveness of the proposed method.

5.2.2. Trajectory Physical-world Realism
To ensure that crafted historical trajectories are not elimi-
nated by countermeasures, they must possess realism in the
physical world. Specifically, the crafted trajectories should
be executable by vehicles and comply with the laws of real-
world trajectories. We sampled from various trajectories
generated by the proposed model, observed the visualiza-
tion results of the crafted trajectories, and analyzed their dif-
ferences from reference samples (as shown in Figure 3). We
present an example that includes the original trajectory of a



(a) Curve (b) Intersection

(c) Straight (d) T-Intersection

Figure 4. Validation on the Virtual-Real Testing Platform The proposed method was validated on a virtual-real testing platform using
four common scenarios: curves, intersections, straight roads, and T-junctions. In each figure, the top-left and bottom-right images represent
the bird’s-eye views from the simulation and real-world platforms, respectively, while the bottom-left and top-right images correspond to
the first-person and third-person perspectives of the autonomous vehicle in the simulation.

Figure 5. DTW Statistical Histogram of crafted Trajectories
This figure presents the DTW statistical histogram of crafted his-
torical trajectories across 1,000 randomly selected data samples.
The horizontal axis represents the DTW statistical intervals, while
the vertical axis indicates the proportion of samples within each
interval.

vehicle attacked by a trajectory prediction model and a tra-
jectory that induces erroneous predictions using the crafted

historical trajectory. In this process, the newly generated
predictive trajectory evidently interferes with the drivable
area of the autonomous vehicle; during driving, the trajec-
tory prediction task of the autonomous vehicle necessarily
prompts it to make trajectory adjustments to avoid colli-
sions.

Furthermore, to further validate the physical realism of
the crafted trajectories, we employed the DTW quantitative
metric to statistically analyze 1,000 original benign trajec-
tory samples based on the crafted trajectory from the ex-
ample in the figure, with the statistical results shown in
Figure 5. From the analysis of the experimental data, it
is observable that trajectory samples with DTW values in
the range of (0, 3] account for only 0.1%, indicating that
the crafted historical trajectories generated by the proposed
method are not completely detached from the reference of
benign trajectories; these approximate samples attest to the
realistic plausibility of the generated trajectories. Addition-
ally, the adequate proportion of samples with DTW values
in the range of (3, 10] further corroborates that the sam-
ple trajectory distribution possesses practical feasibility in
the physical world. The benign trajectories are sourced



from the Argoverse dataset, which is based on real vehi-
cle data collection, thereby endowing its reference samples
with real-world reliability, while the existence of samples
in other intervals shows the rich diversity of samples within
the dataset.

5.2.3. Validation on a Virtual-Real Testing Platform
In this subsection, we conducted simulations and real ve-
hicle tests using the virtual-real testing reality platform[2].
Specifically, the experimental vehicle’s Autoware system
was equipped with the robust TNT trajectory prediction
model. We employed simulated attack vehicles within the
virtual-real testing reality platform, where the autonomous
vehicles in the simulation environment concurrently exe-
cuted trajectory prediction tasks. The sampling images
from the validation process are shown in Figure 4.

During the experiments, we selected four common driv-
ing scenarios: curved roads, intersections, straight roads,
and T-intersections. In the curved road scenario, the attack
vehicle induced erroneous trajectory predictions through
crafted historical trajectories, causing the autonomous ve-
hicle to violate traffic rules and become immobilized. At
intersections, the adversarial trajectories disrupted the driv-
able area, leading to misjudgments about surrounding vehi-
cles. On straight roads, the predicted trajectory resembled
a U-turn, triggering the autonomous vehicle’s emergency
stop. At T-intersections, incorrect lane change predictions
reduced the safe driving area, significantly impairing au-
tonomous vehicle operations.

Through verification on the virtual-real testing platform,
our method demonstrated real-world transferability. The
engagement of attack vehicles using crafted historical tra-
jectories effectively compressed the erroneous trajectory
prediction results of the autonomous vehicles.

6. Conclusion
This paper proposes EL-Attack, a novel adversarial attack
method that leverages collaborative optimization across ex-
plicit and latent spaces to investigate the security vulnera-
bilities of autonomous driving trajectory prediction models.
By employing a spatiotemporal attention perception mod-
ule for extracting trajectory semantics and constructing a
threat model using an adversarial autoencoder, EL-Attack
introduces an interaction risk field in the explicit space and
applies semantic-level perturbations in the latent space. Ex-
perimental results on the Argoverse dataset and a virtual-
real combined testing platform demonstrate the effective-
ness of EL-Attack, Achieved attack success rates 4% and
15.2% higher than three baseline methods on the Vector-
Net and TNT models, respectively. The generated adversar-
ial trajectories remain physically feasible while successfully
inducing the target vehicle into hazardous areas. This work
highlights the susceptibility of trajectory prediction mod-

els to multi-space collaborative attacks, offering insights for
enhancing the security of autonomous driving systems.
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