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Abstract

Autonomous driving systems rely on advanced perception
models to interpret their surroundings and make real-time
driving decisions. Among these, Bird’s Eye View (BEV)
perception has emerged as a critical component, offering
a unified 3D representation from multi-camera and sensor
inputs. However, in the meantime, the security vulnerabili-
ties of BEV-based models are starting to be examined within
the scope of adversarial machine learning research. This
study provides a preliminary security analysis of BEV per-
ception models, focusing on adversarial attacks employed
in different modalities, including both visual signals from
cameras and point-cloud signals from LiDAR. Specifically,
we examine the vulnerabilities of state-of-the-art models–
including BEVDet, BEVDet4D, DAL, and BEVFormer–to
different forms of adversarial attacks. In addition to the
white-box setup, we also check the transferability of these
attacks to black-box models.

Our findings reveal that although multi-modal inputs
significantly improve BEV models’ detection performance,
they also introduce new channels for adversarial attacks
and hence increase vulnerability. As long as the adversarial
attack is applied to all modalities that a model takes in, e.g.,
adversarial perturbation is added to both vision and LiDAR
signals for a vision-LiDAR model, and the attack can al-
ways achieve an almost complete success rate, while utiliz-
ing incomplete modalities to attack results in sub-optimal
outcomes, as this strategy allows detection models to still
capture undisturbed information. Moreover, we show that
the designed attack can transfer across totally different BEV
architectures. For example, adversarial input trained with
DAL, a CNN-based model, can still transfer to BEVFusion
and significantly degrade its performance, despite BEVFu-
sion using a transformer-based architecture. We hope that
this work can help to raise the community’s attention to the
vulnerability of BEV-based autonomous driving systems.

1. Introduction

Autonomous driving technology has advanced rapidly in re-
cent years, leveraging sophisticated perception models to
interpret and navigate real-world environments. These sys-
tems rely on a variety of sensors, including cameras, Li-
DAR, and radar, to construct a comprehensive understand-
ing of their surroundings. Among these, Bird-Eye-View
(BEV) perception [6–8, 10–12] has emerged as a power-
ful approach, enabling self-driving vehicles to generate a
unified spatial representation from multiple sensor inputs.
Given its growing adoption on industry-leading platforms
such as Waymo and the possibilities that adversarial threats
against autonomous vehicles can pose tangible safety risks
in real life, adversarial attacks on BEV-based perception
are starting to attract interest from the research commu-
nity [3, 4, 9, 24].

This work investigates the security vulnerabilities of ad-
vanced autonomous driving perception systems, focusing
on how adversarial attacks employed on different modalities
affect multi-modal BEV-based detection models. Specif-
ically, we develop adversarial attacks through different
modalities for models with different input formats, e.g.,
single-frame vision-only attack, multi-frame vision-only at-
tack, and multi-frame vision-LiDAR attack. Our research
shows several interesting findings. First, we find that vision-
based models such as BEVDet [7] and BEVDet4D [6] are
highly susceptible to adversarial attacks, leading to percep-
tual failures. Multi-sensor models such as DAL [8] and
BEVFormer [11] improve accuracy but remain vulnerable
to synchronized vision-LiDAR attacks, revealing flaws in
current multi-sensor security. Additionally, we found that
although extra input signals such as multi-frame camera im-
ages and LiDAR can enhance models’ robustness against
adversarial perturbation, they also introduce new channels
for more adversarial inputs, hence more vulnerabilities. For
white-box attacks, as long as the adversarial input is ap-
plied to all input signals, e.g., the adversarial perturbation is
added to both the LiDAR signals and all frames in the in-
put image sequence for a multi-frame vision-LiDAR BEV
model, the adversarial attack can achieve a complete suc-



cess rate.
More interestingly, we note that the adversarial attack

that we developed shows strong transferability to black-box
models when testing, even if the testing-time model and
training-time model use completely different architectures,
e.g., CNN-based and Transformer-based architectures. This
strong transferability among models further stresses the fea-
sibility of employing such adversarial attacks in real-life
scenarios. We also include a straightforward simulation
showing how our generated adversarial image patch and
polygon mesh, when attached to a vehicle, lead to the fail-
ure of the rear car’s BEV perception module. This, in turn,
disrupts the rear vehicle’s planning module, ultimately re-
sulting in a practical traffic accident.

We believe that the vulnerability findings in this paper
also highlight the urgent need for robust adversarial de-
fenses tailored for BEV-based perception systems. Future
research should broaden adversarial assessments in com-
plex and real-world driving scenarios to enhance the secu-
rity of autonomous systems, emphasizing the importance of
resilient defenses against cyber-physical threats.

2. Related Works
Bird-Eye-View Detection BEV detection has become
a critical component of autonomous vehicle perception,
transforming multi-camera and sensor inputs into a uni-
fied top-down spatial representation. BEVDet [7] pioneered
vision-only BEV detection by using a two-stage encoding
process to extract and transform multi-view image features
into BEV space. BEVDet4D [6] and SOLOFusion [13] ex-
tend these by incorporating temporal cues, improving mo-
tion prediction and tracking, while BEVDepth extends these
via depth information for improved object localization.

Inspired by 3D object detection models [5, 15, 17–20]
that utilize LiDAR for better object recognition, BEV mod-
els with LiDAR signals [8, 12] enhance BEV perception
further through multi-modal sensor fusion, integrating Li-
DAR signals for improved depth estimation and object lo-
calization. BEVFormer [11], a transformer-based model,
introduces a historical BEV memory, leveraging attention
mechanisms for long-term tracking and improved scene un-
derstanding.

Although BEV detection improves 3D perception, it also
introduces security concerns. Vision-only models such as
BEVDet and BEVDet4D are vulnerable to adversarial per-
turbations that can manipulate object detection. Sensor-
fusion models such as DAL [8] and BEVFusion [11] add
potential attack surfaces, including LiDAR spoofing and
feature manipulation. These threats pose significant risks
to the safety of autonomous driving. This report sys-
tematically analyzes adversarial vulnerabilities in BEV-
based perception, evaluating attack strategies on BEVDet,
BEVDet4D, DAL, and BEVFormer in simulated environ-

ments, with a focus on real-world security implications and
defensive strategies.

Adversarial Attacks. Adversarial attacks [1, 3, 14, 14,
21–23] pose significant challenges to the security of ma-
chine learning systems, particularly in the context of au-
tonomous driving. Brown et al. [1] introduced the concept
of an adversarial patch, a universal, robust, and targeted per-
turbation that, when added to any scene, can mislead im-
age classifiers into predicting a specific target class. These
patches are physically realizable and effective under var-
ious transformations, highlighting vulnerabilities in visual
perception systems. Specifically in the field of autonomous
driving, studies have explored the possibilities of attack-
ing the perception module for autonomous driving through
camera [25] or LiDAR signals [2, 16]. Based on these
findings, MSF-ADV [3] examined the security of multi-
sensor fusion (MSF) perception systems in autonomous ve-
hicles. They developed a physically realizable adversar-
ial 3D-printed object designed to be invisible to both cam-
era and LiDAR sensors simultaneously. This attack chal-
lenges the assumption that MSF systems are inherently ro-
bust against single-sensor attacks by demonstrating that co-
ordinated attacks can compromise all fusion sources, lead-
ing to critical perception failures. These studies show that
both vision-only and sensor-fusion BEV models are suscep-
tible to adversarial perturbation in input signals, making au-
tonomous driving systems relying on these models vulnera-
ble to malicious attackers.

3. Methodology
3.1. Adversarial Attack on Vision-Only Model
3.1.1. Vision-Only Model with Single-Frame Input
As the first step in developing an adversarial attack frame-
work, we adapt an existing white-box attack method, e.g.
PGD-Attack, to the BEV setting. Let I ∈ RC×H×W be
an input image comprising the N targets given by T =
{t1, t2, . . . , tN}. By feeding the image I , into the 3D ob-
ject detectors, we get n perception results, capturing class,
3D bounding boxes, and other attributes, represented as
f(I) = {y1, y2, . . . , yn}. Here, yi symbolizes a discrete
detection attribute such as location, category, velocity, etc.

We then compare these predictions with the ground truth
bounding boxes T , establishing a match when the 2D cen-
ter distances on the ground plane are below a predefined
threshold. We hereby consider both pixel-based attacks,
where bounded perturbations are added to the whole image,
and patch-based attacks, where unbounded perturbations
are added into a pre-defined region of the image. Note that
for the patch-based attack, considering a target within a 3D
bounding box, it can be characterized by its eight vertices
and a central point, collectively denoted as {c0, c2, . . . , c8}



with each ci ∈ R3. Using the camera parameters, we project
these 3D points onto 2D points in the image plane, which
yields the transformed set {c′0, c′2, . . . , c′8}. We define the
size of the adversarial patch to be proportional to the size
of the rectangle formed by these 2D points and strategically
position the adversarial patch to be centered at the point c′0.

Regarding the attack configuration, we consider untar-
geted attacks for classification for each target and maximize
the following objective:

Lcls = − 1

N

N∑
i=1

C∑
j=1

f j
cls (I + r, ti) log pij (1)

where C denotes the number of classes and f j
cls denotes the

confidence score in the j-th class.
For a fair comparison, confidence scores undergo nor-

malization within the range [0,1] using the sigmoid func-
tion, which mitigates sensitivity to unbounded logit ranges.

To attack the localization and other geometrical at-
tributes such as orientation and velocity, we adopt the
straightforward L1 loss as the objective function,

Lgeo =
1

N

N∑
i=1

(∥floc(I + r, ti)− loci∥1 (2)

+ ∥forie(I + r, ti)− oriei∥1 (3)
+ ∥fvel(I + r, ti)− veli∥1). (4)

Using these objective functions together completes our
adversarial attack to BEV-based object detectors:

L = Lcls + Lgeo (5)

The adversarial perturbation r is optimized iteratively
using Projected Gradient Ascent, as

ri+1 = ri + α× sgn(∇I+riL). (6)

3.1.2. Vision-Only Model with Multi-Frame Input
Temporal signals are beneficial for accurate location and ve-
locity estimation in BEV detectors; however, they increase
the attack surface as information from multiple timestamps
is gathered and processed together.

Given the BEV detection model with multi-frame input,
we consider two kinds of vision-only adversarial attacks:
• Single-frame adversarial attack is performed by simply

applying the attack we developed in Sec. 3.1.1 onto the
last frame in each frame sequence;

• Multi-frame adversarial attack performs the attack on
all the frames in the frame sequence instead of only the
last one. To make the generated adversarial samples con-
sistent with the movement of objects, the adversarial sam-
ples are generated in the 3D space and then translated to
2D space instead of directly generating the samples in the
2D space.
The BEV detection model’s performance under each sce-

nario is discussed in Sec. 4.3.2.

Figure 1. One example of our adversarial polygon mesh.

3.2. Adversarial Attack on Vision-LiDAR Model
Compared to camera-captured images, 3D LiDAR data is
another important data modality that is commonly used in
the autonomous driving industry. Compared to cameras, Li-
DAR measures provide more accurate 3D geometric cues
such as depth and shapes, but are inherently more sparse
and less semantic-oriented. Therefore, the complementary
nature of different data modalities has motivated the design
of multi-modal sensor-fusion detection models. In princi-
ple, the Multi-Sensor Fusion (MSF) model design can be
more robust against malicious attacks under the assumption
that not all sources are attacked at the same time.

To adversarily attack a BEV detection model via LiDAR
signals, an object can be placed on top of a vehicle to inter-
fere with the LiDAR measurements, altering the captured
point-cloud data to influence the model detection results.

We use MSF-ADV [3] to alter the shape of an attack ob-
ject represented by a 3D polygon mesh for each vehicle and
pedestrian in the scene to generate an adversarial polygon
mesh. That object is to be attached to the surface of a ve-
hicle or pedestrian to alter the LiDAR signal. Similarly to
the patch-based attack, we propagate the gradient from the
optimization objective to a benign 3D object, as shown in
Fig. 1. The gradient is then used to alter the shape of that
benign 3D object to make it adversarial.

The optimization objective consists of three loss func-
tions. The first is simply the confidence score that a vehicle
or pedestrian will be undetected.

La = y, (7)

where y is the model’s predicted confidence score for the
object to be made invisible.

The second one is a Laplacian smoothing loss defined as

Lr =
∑
i

∥∥∥∥∥∥vi − 1

|N(i)|
∑

j∈N(i)

vj

∥∥∥∥∥∥
2

(8)



Figure 2. The front camera view w/ Vision-LiDAR adversarial
attack.

where M is the total number of vertices in the polygon
mesh, vi is the 3D coordinates of a vertex in the polygon
mesh, vj is the 3D coordinates of a neighboring vertex ad-
jacent to vi, N(i) is the total number of vertices adjacent to
vi. The purpose of this loss is to smooth out the surface of
the adversarial object, therefore increasing the realizability
to 3D print the object.

The last one is the stealthiness loss to constrain the dif-
ference between the adversarial polygon mesh and the orig-
inal polygon mesh so that it may look stealthier and natural.
This loss is defined as the mean maximum absolute differ-
ence between the vertices in the adversarial polygon mesh
and the ones in the original mesh.

Ls =
1

M

M∑
i=1

||vi − v′i||∞ (9)

where v′i are the 3D coordinates of a vertex in the original
polygon mesh corresponding to vi.

3.2.1. Temporal-Continuous Vision-LiDAR Attack
In each frame, an object is placed on top of a vehicle to in-
terfere with the LiDAR measurements, altering the captured
point-cloud data to further interfere with the model’s detec-
tion results. The patch-based attack designed for attacks
along visual temporal sequences as mentioned in Sec. 3.2
is also applied simultaneously, making sure that the model
receives adversarial signals via both modalities (ie, vision
and LiDAR). Fig. 2 is a visual illustration of our attack: a
patch is attached to the back of the vehicle to interfere with
the camera, and an adversarial object is placed on the top of
the vehicle to disturb the LiDAR sensor.

4. Experiments
4.1. Simulation Settings
To highlight how the attack on the perception module would
actually affect the decision and driving behavior of an au-
tonomous driving agent, we need to run the agent in a sim-
ulation world. To this end, we opt for CARLA, an open-
source simulator for autonomous driving research, which
has been developed from the ground up to support the de-
velopment, training, and validation of autonomous driving

Figure 3. Sensor suite setup in CARLA simulator.

w/ Attack Car Pedestrian

0.22 0.14
✓ 0.00 0.00

Table 1. mAP of BEVDet-R50 w/o and w/ vision-only single-
frame attack.

systems. The simulation platform supports flexible specifi-
cation of sensor suites and environmental conditions.

We set up CARLA to generate and collect simulation
data in a nuScenes-like style, which is suitable for BEV de-
tection models. Specifically, we load seven different routes
and weather combinations, spawn over a hundred vehicles
and pedestrians, and set them in autopilot mode to run the
simulation. After that, we deploy six camera sensors, one
LiDAR sensor, and six RADAR sensors to a specific vehi-
cle and save the sensor capture to disk at a fixed frequency.
The setup of the sensor suite is shown in Fig. 3.

4.2. Evaluation Settings
When developing vision-only adversarial attacks, we use
BEVDet [7] and BEVDet [6] to train our adversarial image
patches. For vision-LiDAR models, we choose DAL [8] to
train both our adversarial image patches and our adversarial
polygon mesh.

The adversarial inputs we develop are tested on white-
box models by default, e.g. the test-time model and the
development-time model being the same. The transferabil-
ity of adversarial inputs to a black-box model is discussed
in Sec. 4.5.

4.3. Adversarial Attack on Vision-only Model
4.3.1. Attacking BEVDet with Single-Frame Input
We choose BEVDet-R50 [7] as the tested model with the
single-frame vision-only attack discussed in Sec. 3.1.1 with
our collected CARLA simulation data and show the results
in Tab. 1. We can see that most detected objects in Fig. 4 are
not recognized when a single-frame attack is used in Fig. 5.



Figure 4. Detection results without attack.

Figure 5. Detection results with vision-only single-frame attack.

Attack Method Car Pedestrian

Single-frame 0.15 0.08
Multi-frame 0.00 0.00

Table 2. mAP of BEVDet4D-R50 w/ single-frame adversarial at-
tack and multi-frame adversarial attack.

4.3.2. Attacking BEVDet4D with Multi-Frame Input
To extend beyond simple single-frame input for BEV detec-
tion, and consider additional temporal information in adver-
sarial attacks, we experiment with the temporally extended
version of BEVDet, BEVDet4D [6], which retains the in-
termediate BEV feature of the previous frame and concate-
nates it with those generated by the current frame before
using the features for predictions.

As shown in Tab. 2, we can observe that the mAP de-
tection performance decreased significantly as the attack
achieved a 100% attack success rate.

Our results suggest that models relying solely on visual
data, such as BEVDet and BEVDet4D, are quite vulnerable
to adversarial disturbances, which can cause major percep-
tual breakdowns.

4.4. Vision-LiDAR Attack on Vision-LiDAR Model
Since BEVDet does not take LiDAR signals as inputs, we
use DAL [8] to evaluate the performance of the LiDAR at-
tack. As shown in Tab. 3, attacking with vision-only attack
alone is not enough for a vision-LiDAR BEV model, while
attacking from both modalities can achieve a complete suc-
cess rate.

Attack Method Car Pedestrian

Multi-frame 0.20 0.13
Multi-frame and LiDAR 0.00 0.00

Table 3. mAP of DAL w/ adversarial attack via Visual Sequence
and LiDAR.

These experimental results indicate that while multi-
modal sensor fusion models like DAL improve perception
accuracy, they remain vulnerable to coordinated vision-
LiDAR attacks, highlighting the limitations of current
multi-sensor security strategies. We can also conclude
that, for adversarially attacking a white-box BEV detection
model, it is crucial to achieve a complete success rate in
attacking via all the modalities and channels.

4.5. Black-Box Attack

So far, we have only been working on BEVDet and its
derivative models. However, an intriguing property of ad-
versarial examples that makes them threatening in the real
world is their transferability. Transferable attacks assume a
realistic scenario in which adversarial examples generated
on a known surrogate model can be directly transferred to
the unknown target model. Such attacks require no inter-
action with the target model or any prior knowledge of the
target model and thus are more dangerous to safety-critical
applications such as autonomous driving.

Therefore, to study the security implications of trans-
ferable attacks, we choose BEVFormer [11] as the target
model and evaluate its performance on adversarial pertur-



Figure 6. Detection results of BEVFormer without attack.

Figure 7. Detection results of BEVFormer with attack.

Attack Car Pedestrian

0.24 0.13
✓ 0.07 0.03

Table 4. mAP of BEVFormer with and without multi-frame
vision-LiDAR adversarial attack.

bations generated based on BEVDet4D. BEVFormer is an-
other popular BEV-based 3D detection model, with two ma-
jor differences compared to BEVDet and its various variant
models (e.g. BEVDet4D and DAL). First, the former is a
Transformer-based model, while the latter is a CNN-based
model. Second, the temporal version of the former main-
tains and updates a special memory feature which can be
seen to be encoded with BEV features from the previous
timestamps, while the latter directly uses the previous BEV
features. If the attack transfer success rate remains high
even with these distinct differences, it means an even more
severe security threat in the current perception modules.

The experimental results in Tab. 4 demonstrate that at-
tacking BEVFormer with the adversarial example generated
based on BEVDet leads to a surprisingly high success rate.

We also provide a visualization comparison in Fig. 6,
showing that BEVFormer does not have difficulty detect-
ing the vehicle forward without attack. However, in Fig. 7,
it can be observed that most vehicles and pedestrians can no
longer be detected by the model, indicating the effectiveness
of our attack method.

4.6. Effects on Planning Module
To investigate how adversarial attacks on perception mod-
els affect autonomous driving decisions, we build an agent
in CARLA with a perception module (e.g. BEVDet) and
a planning module for driving actions such as acceleration

Figure 8. This is a No Attack Scenario, where no attack is em-
ployed and the car can be successfully detected.

and braking. This involves integrating components like ad-
versarial input generation and multi-camera 3D detection
models into CARLA’s codebase, enabling them to work to-
gether to produce real-time control signals for a CARLA
agent (e.g., a car).

4.6.1. Planning Module Implementation

We first describe how we implement the planning module.
Specifically, to highlight the effect of wrong detection re-
sults under attack and minimize the effect of other modules,
we design a straightforward planning module: Accelerate
to 16 m/s when there is no obstacle detected within 20 me-
ters ahead, and decelerate to match the speed of the obstacle
ahead if otherwise. In addition, we create a simple scene in
which two cars are created in a single lane. One car is the
main vehicle controlled by the autonomous agent, while an-
other car is running ahead at 8 m/s. A 3D detection model
will act as the perception module to detect any obstacles for
decision-making. If the perception module is successfully
attacked and does not recognize the parked car ahead, the



Figure 9. This is an Attack Scenario, where the adversarial patch
and polygon mesh are attached to the car thus the car appears “in-
visible”.

Figure 10. Undetected vehicle causes the planning module to de-
cide to accelerate, resulting in a collision.

car behind will crash into the car ahead, indicating severe
safety consequences.

4.6.2. Attacking Framework Implementation

In our implementation, to attach the adversarial patch to
the back of the vehicle, the back facet of the front vehi-
cle boundary box is used to determine the 4 corners of the
adversarial patch. The facet is resized to half the original
size and the coordinates of its 4 corners are translated to
the coordinates in the camera view. The adversarial patch is
then warped to fit the quadrilateral defined with these 4 cor-
ners in the camera view. The adversarial 3D object is ren-
dered outside CARLA with open3d. The box blur is then
applied to the open3d output image to suppress the noise in
the background before the blank area is removed by crop-
ping. The resulting image is then patched onto the the top
of the front vehicle in the camera view from CARLA with
a similar procedure for attaching the adversarial patch to
the front vehicle. The LiDAR signal of the adversarial 3D
object is also generated outside CARLA and then merged
with the LiDAR signals from CARLA before being fed to
the detector.

4.6.3. Visualized Results

A simple visualization of the third-person view of an au-
tonomous vehicle in CARLA is shown below. In Fig. 8, no
attack is employed and the vehicle in front is detected by
the ego vehicle. In Fig. 9, the attack is applied to the front
vehicle, making it invisible to the rear vehicle. In Fig. 10,
as no obstacle is detected, the rear vehicle accelerates and
collides with the car in front of it.

5. Conclusion

In this paper, we conducted a systematic evaluation of ad-
versarial vulnerabilities in Bird’s Eye View (BEV) percep-
tion models used for autonomous driving. Our analysis
focused on multiple BEV-based detection frameworks, in-
cluding BEVDet, BEVDet4D, DAL, and BEVFormer, as-
sessing their robustness against adversarial attacks on both
vision-only and multi-sensor fusion systems. We evalu-
ated these models in various adversarial scenarios, includ-
ing patch-based attacks, temporal adversarial strategies, and
LiDAR spoofing, with a particular focus on their impact on
real-world driving safety.

Our findings indicate that vision-only models like
BEVDet and BEVDet4D are highly susceptible to adversar-
ial perturbations, leading to significant perception failures.
While multi-modal sensor fusion models like DAL and
BEVFormer improve perception accuracy, multi-modality
fusion introduce new vulnerabilities therefore they remain
vulnerable to coordinated vision-LiDAR attacks, highlight-
ing the limitations of current multi-sensor security strate-
gies. Furthermore, adversarial transferability across models
underscores the broader risk to BEV-based perception sys-
tems, even if adversaries cannot access the target model.

These results emphasize the urgent need to investigate
the robustness of current widely adopted BEV perception
systems against adversarial attacks, especially attacks car-
ried out via multiple modalities. Future work should extend
adversarial evaluations to more complex driving environ-
ments and real-world scenarios to further reveal vulnerabil-
ities in current BEV detection systems.
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