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Abstract

Recent advances in deep reinforcement learning (DRL)
have demonstrated significant potential in applications
such as autonomous driving and embodied intelligence.
However, these large-scale, multi-parametric DRL models
remain vulnerable to adversarial examples, while their pro-
longed training durations incur substantial temporal and
economic costs.Current methods primarily focus on ad-
versarial attacks during isolated training phases, whereas
practical implementations may face interference across all
training stages. To address this gap, we propose FullCy-
cle, a full stage adversarial attack method that systemat-
ically assesses DRL robustness by injecting perturbations
throughout the complete training pipeline. Experimen-
tal results reveal that introducing FullCycle adversarially
perturbs algorithm convergence speed and agent perfor-
mance to varying degrees. This work establishes a novel
paradigm for robustness evaluation in reinforcement learn-
ing systems.Codes are open: https://github.com/
C-137-Mzs/fullcycle.

1. Introduction
In recent years, the integration of deep reinforcement learn-
ing with large language models has demonstrated signifi-
cant potential in various fields such as autonomous driving,
embodied intelligence, image-text generation, and biologi-
cal structure prediction.

However, large-scale, multi-parameter deep reinforce-
ment learning models are often susceptible to adversarial
examples. As shown in Fig.1, these adversarial instances
originate from multiple sources: reward settings, state ac-
quisition, action selection, training duration, interactive en-
vironments, and the architecture of reinforcement learning
algorithms themselves. Taking state acquisition as an exam-
ple, in tasks that integrate computer vision—such as obsta-
cle avoidance by autonomous vehicles or object grasping by
robotic arms—the reinforcement learning algorithm cannot

Figure 1. Reinforcement Learning Algorithms could be affected
by many factors

acquire fully accurate state observations within the interac-
tive environment. This uncertainty arises from sensor errors
or dataset biases. Additionally, attacks targeting the envi-
ronment can also affect model performance; for instance,
manipulating environmental dynamic parameters (e.g., fric-
tion coefficients, gravity parameters) in a dynamics environ-
ment can lead to policy poisoning, significantly degrading
the model’s performance in continuous control tasks[2]. In
other words, most reinforcement learning agents trained in
simulated environments struggle to maintain stable perfor-
mance, often resulting in models that appear to perform well
during training but suffer severe degradation or even fail to
function effectively when applied in real-world scenarios,
leading to time and economic losses. Therefore, conducting
robustness evaluations on existing foundational reinforce-
ment learning models is essential.

A considerable body of work focuses on introducing dis-
turbances to the agent’s state observations or applying ad-
versarial perturbations at a single stage[6, 10, 13, 14]. How-
ever, in reality, adversaries may attack multiple stages of
reinforcement learning algorithms, making single-stage ad-
versarial attacks insufficient for comprehensively assessing
the robustness of these algorithms. Therefore, we propose

https://github.com/C-137-Mzs/fullcycle
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FullCycle, a full-stage adversarial attack method aimed
at evaluating the robustness of reinforcement learning al-
gorithms through perturbing state observation acquisition,
capping reward accumulation, and restricting action selec-
tion. We conducted perturbation experiments on three re-
inforcement learning algorithms within the Highway sim-
ulation environment and found that perturbations at dif-
ferent stages have high-confidence attack effects on fine-
tuned models. This discovery aids in identifying signs of
malicious injection into models during the early stages of
large-scale training, thereby minimizing time and economic
losses.

Our main contributions are as follows:
1. Proposing, for the first time in the autonomous driving

industry, an adversarial attack approach targeting all stages
of the training process for foundational reinforcement learn-
ing models;

2. Comparing the adversarial attack effects across multi-
ple foundational reinforcement learning algorithms and an-
alyzing the various model metrics potentially influenced by
introduced perturbations;

3. Discovering that adversarial attacks at different stages
exert high-confidence attack effects on fine-tuned models,
enhancing the comprehensiveness of robustness testing for
algorithms.

This research underscores the necessity of robustness as-
sessment in reinforcement learning and provides valuable
insights for improving the reliability and security of AI sys-
tems in practical applications.

2. Related Works
Basic RL Algorithms. DQN is a reinforcement learn-
ing algorithm that integrates Q-learning with deep neu-
ral networks to address decision-making problems in high-
dimensional state spaces. The core idea is to use a neural
network to approximate the action value function Q(s, a),
which represents the expected return for taking action a in
state s.
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This update is implemented via a neural network, where
the network parameters ✓ are adjusted based on the loss
function:
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Here, ✓�i denotes the parameters of the target network,
which are periodically copied from the current network ✓i.

DDQN improves upon DQN by addressing overestima-
tion issues. It separates the selection of the best action from
the evaluation of its value to enhance performance.

yDDQN
i = r + �Q(s0, argmax

a
Q(s0, a; ✓); ✓�) (3)

Here, ✓� represents the parameters of the target network,
used to compute the maximum Q-value action for the next
state s0, but the actual Q-value is evaluated by the current
network ✓.

DuDQN combines the advantages of Dueling Network
Architecture with DDQN to further enhance model per-
formance. Dueling Networks decompose the Q-function
into a state value function V (s) and an advantage function
A(s, a), allowing better understanding of the importance of
different actions in various states.
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Here, V (s) represents the value of state s, A(s, a) in-
dicates the relative advantage of taking action a in state s,
and ✓, ↵, � denote the parameters of different parts of the
network.

Adversarial Attack for RL Algorithms. Recent ad-
vancements in adversarial robustness for reinforcement
learning (RL) have addressed critical challenges in safety-
critical applications, particularly in the domain of au-
tonomous driving. Wang et al.[11] developed a policy gra-
dient method with global optimality guarantees and com-
plexity analysis, specifically tailored to ensure robust RL
under model mismatches, which is crucial for ensuring reli-
ability in unpredictable driving environments. Moving for-
ward, Yang et al.[12] introduced TRACER, a robust varia-
tional Bayesian inference approach designed for offline RL
that effectively deals with multiple corrupted data types,
enhancing the robustness of agents in real-world scenar-
ios where data corruption is common. Miao et al.[9] pro-
posed an iterative scheduled data-switch training frame-
work to improve the noise resistance of neural machine
translation models. Mao et al.[8] suggested discrete ad-
versarial training (DAT) to boost visual models’ robust-
ness and generalization capabilities by transforming con-
tinuous images into symbolic sequences. Li et al.[4] pre-
sented ActorRL, a novel distributed reinforcement learning
framework aimed at solving multi-agent collaboration prob-
lems, significantly increasing system robustness and effi-
ciency. Leo Ardon et al.[1] demonstrated how reinforce-
ment learning can solve NP-hard problems like the capaci-
tated vehicle routing problem, showcasing potential impli-



Figure 2. We proposed FullCycle, a full stage adversarial attack method to evaluate the robustness of reinforcement learning algorithms
through perturbing state observation acquisition, capping reward accumulation and restricting action selection.

cations for logistics within transportation sectors. Addition-
ally, improvements in sample-efficient deep reinforcement
learning through uncertainty estimation by Vincent Mai et
al.[7], and the development of AdaPool, a diurnal-adaptive
fleet management framework using change point detection
by Marina et al.[3], indirectly contribute to the field by ad-
dressing aspects relevant to fleet management and operation
efficiency.

3. Method
Fig.2 illustrates the framework and key ideas of our evalua-
tion. FullCycle mainly consists of observation attack, action
attack and reward attack.

3.1. Observation Attack By State Perturbation
In reinforcement learning, the agent relies on observation
data provided by the environment to make decisions. How-
ever, these observations may be subject to adversarial per-
turbations, which can mislead the agent into making sub-
optimal decisions[5]. To evaluate and enhance the robust-
ness of the agent against such perturbations, we employ an
observation attack method based on the Fast Gradient Sign
Method (FGSM).

The core idea of this method is to generate adversarial
samples that can mislead the agent’s decision-making pro-
cess. Specifically, for a given state xobs, we compute the

gradient of the loss function with respect to the input ob-
servation and add a small but effective perturbation in the
direction of the gradient. The formula is as follows:

xobs adv = xobs + ✏ · sign(rxL(F (xobs), yobs)) (5)

In this equation, xobs represents the original observation;
✏ is a parameter controlling the magnitude of the perturba-
tion; rxL(F (xobs), yobs) denotes the gradient of the loss
function with respect to the input observation; sign(·) ex-
tracts the direction of the gradient rather than its magnitude.

The adversarial sample xobs adv generated in this way is
designed to remain similar to the original observation while
maximally disrupting the agent’s action selection mecha-
nism.

The specific implementation steps are as follows:
• State Perception: First, the agent receives the current

state information from the environment.
• Loss Computation and Gradient Calculation: Next,

the corresponding loss function is computed based on the
current policy and objective (e.g., maximizing cumulative
rewards). The gradient of this loss with respect to the ob-
servation is then calculated.

• Adversarial Sample Generation: Using the obtained
gradient direction and a predefined perturbation strength
✏, an adversarial sample is generated.



• Policy Adjustment: Finally, the adversarial sample is
used in place of the original observation to re-evaluate
and select actions.
Through this approach, we can effectively simulate po-

tential adversarial interference scenarios in real-world ap-
plications, thereby testing and improving the agent’s perfor-
mance under such challenges. This method not only helps
identify vulnerabilities in existing models but also provides
important experimental insights for developing more robust
learning algorithms.

3.2. Action Attack By Lane Restriction
Traditional action-based attack methods directly modify the
agent’s actions to force it to perform specific behaviors.
However, such approaches are often too ”violent” and lack
realism. We propose an environment-interference-based ac-
tion attack method, where obstacles (in the form of vehi-
cles) are randomly placed on the agent’s driving path to in-
directly influence its decision-making.

The positions of obstacles on each lane are determined
by a truncated normal distribution:

Pi ⇠ TN(µ,�2, Dmin, Dmax) (6)

The number of obstacles is modeled using a Poisson dis-
tribution:

N ⇠ Poisson(�) (7)

In these formulas, Pi represents the position of obstacles
on the i-th lane, following a truncated normal distribution
TN(µ,�2, Dmin, Dmax) within the interval [Dmin, Dmax].
Here, µ indicates the mean position (e.g., lane center), and
�2 controls the spread of obstacle positions. The range
[Dmin, Dmax] limits where obstacles can appear. Compared
to a uniform distribution, this better models real-world clus-
tering. Meanwhile, N ⇠ Poisson(�) defines the total
number of obstacles, with � indicating road congestion or
obstacle density.

The specific implementation steps are as follows:
• Determine the Total Number of Obstacles: Calculate

the total number of obstacles N using the Poisson distri-
bution.

• Assign Obstacle Positions: Allocate these obstacles to
different lanes and determine their specific positions.

• Set Obstacle States: Ensure that the obstacle vehicles
remain stationary to simulate roadblocks.

• Dynamic Updates: As the agent moves, dynamically ad-
just the positions and numbers of obstacles to maintain
environmental uncertainty.
This approach avoids the ”violent” direct manipulation

of the agent’s actions, while introducing more sophisticated
probabilistic models to enhance the realism of the attack.

Figure 3. Random obstacles in Highway-env

3.3. Reward Attack By Capping Accumulation
The goal of the reward attack is to limit the agent’s ability
to obtain high reward accumulation. Specifically, during
each episode, we track the maximum reward observed so
far rmax and modify the current reward rt if it exceeds or
equals this maximum. The process can be expressed as the
following system of equations:

8
><

>:

rmax  max(rmax, rt),

rt  
(
(2� ")rmax � rt, if rt � rmax,

rt, otherwise.
(8)

By applying this mechanism, the system tracks the max-
imum reward observed so far within an episode rmax and
updates it whenever a new reward rt exceeds this maximum.
If rt is equal to or greater than rmax, the reward is modified
according to the formula (2 � ")rmax � rt, where ✏ acts
as a penalty factor that controls the strength of the reduc-
tion. This ensures high rewards are systematically reduced
while maintaining a proportional relationship to rmax. Oth-
erwise, the reward remains unchanged. Through this ap-
proach, whenever a reward exceeds the tracked maximum,
it gets reduced, which directly impacts the total cumulative
reward over the entire episode by limiting the agent’s ability
to accumulate exceptionally high rewards.

4. Experiment
4.1. Environment Preparations
Experiments in this paper were conducted in the Highway-
env environment. The specific config and algorithm pa-
rameters are shown in Table 1. Discrete-5 means there
are 5 discrete actions in action space: LANE LEFT, IDLE,
LANE RIGHT, FASTER and SLOWER.

Table 1. Parameters Setting

Parameter Value Parameter Value

lr 0.001 simu freq 10
� 0.9 vehicles count 19

lanes count 5 batch size 20
reward speed [20, 32] mem capacity 200
punish speed [16, 22] train times 200,000
state space Kinematics action space Discrete-5



4.2. Evaluation Indicators
Experiments set five indicators to measure the effectiveness
of different attack methods on different RL algorithms.

Average Living Length Per Episode(ALP): This indica-
tor defines the average of the number of actions performed
by the intelligences in each episode (excluding the buffer
pool), from the beginning to the end (when a collision oc-
curs or when the time cap is reached), which is also the
average length of the Markov chain.The ALP reflects the
ability of the intelligences to stay on track in the face of an
attack. Higher values of ALP indicate that the intelligences
are more resistant to interference and are able to maintain a
stable selection of actions for a longer period of time.

First Success Episode(FSE): The number of rounds re-
quired for the intelligent body to successfully complete the
autopilot task for the first time. An intelligent is considered
to be successful in a round if it does not have a collision,
does not make an irrational action and reaches the upper
time limit of the round.FSE is used to assess the learning
efficiency and robustness of an intelligent. A lower FSE
value indicates that the intelligence is able to quickly adapt
to the environment and overcome the effects of an attack to
achieve the task goal as early as possible.

Average Speed Per Episode(ASP): The average speed at
which the intelligent body travels within each round during
the entire training or testing process (excluding the buffer
pool).ASP not only reflects the speed control ability of the
intelligent body, but also indirectly shows its performance
when dealing with attacks. Ideally, the ASP should be as
close as possible to the preset reward speed range and re-
main relatively fast to ensure efficient and safe driving be-
havior.

Reasonable Rate(RR): The proportion of all actions per-
formed by an intelligent body that are reasonable. By “rea-
sonable” we mean following the rules of the road, staying
on the road, and that’s about it, RR quantifies the ability of
an intelligence to respond appropriately even when under
attack. A high RR means that the intelligence can maintain
a high level of behavioral normality and security even in the
face of challenges.

Success Rate(SR): The percentage of training rounds
(excluding the buffer pool) in which the intelligent body did
not collide, did not perform an irrational action, and reached
the upper time limit of the round.SR is a rather critical indi-
cator, which directly reflects the overall performance of the
intelligent body under counter-attack conditions. A high SR
indicates that the intelligent body not only works well under
normal conditions, but also has sufficient recovery ability
and stability when it is subjected to external interference.

4.3. Comparison and Analysis Between Attacks
As shown in Fig 4, three basic algorithms: DQN, DDQN
and DuDQN can converge normally after 2000 rounds of

episodes without attack, and the loss of each round also
shows a stable decreasing trend, and the speed of each round
increases steadily to 31km/h or above.

The reward/loss curves of the three algorithms under re-
ward attack are the most similar to those under no-attack
state, and the average reward total obtained in a single round
is higher, but the average speed stays at a lower level, indi-
cating that the intelligences under reward attack tend to be
conservative.

The DQN and DDQN algorithms under the action at-
tack maintain the same convergence rate as in the no-attack
state, but DuDQN converges slower under this attack, and
all three algorithms have a very unstable loss in this state.
Nevertheless, the average speed per round can approach the
no-attack state level.

The Observation attack causes the algorithm’s training
process to exhibit very poor convergence, and its loss curve
is also very unstable and the average speed is at a low level.

The FullCycle attack also severely interferes with the
convergence of the algorithm, while the average speed of
the intelligences in each epoch is steadily at the lowest level
of all attacks.

As shown in Table 2, in the absence of all attacks, all
models showed good performance on all indicators. This
provides a baseline that can be used to compare the impact
of different attack methods on the models.

With the reward attack, there is an overall increase in
ALP for all three algorithms, and even the RR for the DQN
algorithm is higher than the baseline model, and it appears
that the reward attack has led to an increase in the per-
formance of the models. In fact, the reward attack causes
the intelligences to avoid acquiring high reward values and
therefore reduces the tendency of the intelligences to ex-
plore, making the intelligences’ actions conservative. By
limiting the acquisition of high reward values, the suc-
cess rate (SR) of the intelligent body decreases significantly
when it encounters unexplored environments. Thus under
reward attacks, even if the intelligent body is able to per-
form more actions, its ability to complete the task is com-
promised.

When confronted with an observation attack, ALP and
SR of all models decreased significantly, indicating that the
average survival time and task efficiency of the intelligences
were very low, showing the great ability of observation at-
tacks to interfere with the decision-making process of the
intelligences. However, the Reasonableness Rate (RR) re-
mained at a high level, indicating that the intelligences were
still able to make mostly reasonable decisions, although the
overall performance was affected.

The action attack resulted in a significant decrease in
ALP and SR and a significant increase in FSE for all mod-
els. This means that in order to successfully complete the
task, the intelligences need to make more attempts, and



Table 2. Attack performance comparisons Between different RL algorithms

Method DQN DDQN DuDQN

ALP FSE ASP(km/h) RR(%) SR(%) ALP FSE ASP(km/h) RR(%) SR(%) ALP FSE ASP(km/h) RR(%) SR(%)

No Attack 40.33 125 30.36 93.67 43.92 40.18 100 30.47 100 43.67 41.41 214 30.55 100 49.19
Reward Attack 50.40 146 28.20 100 34.85 46.27 258 29.07 93.49 45.53 41.16 1045 29.33 92.82 41.39
Observation Attack 15.49 55 28.90 90.99 0.6 15.67 127 29.08 89.88 0.64 15.35 540 27.34 83.47 0.5
Action Attack 39.33 789 29.57 93.08 13.02 38.62 1443 29.60 88.76 5.72 31.25 5478 28.83 88.01 2.19
FullCycle Attack 21.94 1449 27.57 100 0.07 21.30 2388 26.94 100 0.05 19.85 2042 26.67 82.4 0.05

(a) Reward Trend on DQN (b) Reward Trend on DDQN (c) Reward Trend on DuDQN

(d) Loss Trend on DQN (e) Loss Trend on DDQN (f) Loss Trend on DuDQN

(g) Speed Trend on DQN (h) Speed Trend on DDQN (i) Speed Trend on DuDQN

Figure 4. Attack performance comparisons Between different attack methods

the average survival time is drastically shortened, showing
the effect of the action attack on the stability of the intelli-
gences’ actions.

The FullCycle attack, as an adversarial attack method
proposed in this paper, shows a unique advantage in veri-
fying the robustness of reinforcement learning algorithms.

It not only significantly reduces the ALP and SR of each
model, but also substantially increases the FSE, implying
that the intelligent body needs more attempts to success-
fully complete the task. More importantly, this attack re-
sulted in a significant decrease in SR, indicating that the
intelligences had difficulty in maintaining normal decision-



making behavior when under attack.The FullCycle attack
has significant advantages in evaluating and improving the
robustness of reinforcement learning algorithms used in au-
tonomous driving systems.

5. Conclusion and Limitations
Conclusion. This paper proposes a comprehensive attack
framework that exposes the vulnerabilities of deep rein-
forcement learning systems to multi-stage adversarial per-
turbations. By injecting disturbances across the training
phases (state observation, reward accumulation and action
selection), FullCycle significantly degrades algorithm con-
vergence and agent performance, even in fine-tuned models.
Our findings highlight the necessity of holistic robustness
evaluation for DRL systems and provide actionable insights
for securing real-world AI deployments.

Limitations. Our work is limited to the autonomous
driving task in Highway-env, and there is a lack of robust-
ness analysis for the tested RL algorithm in other environ-
ments and tasks.
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