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Abstract

Vision State Space Models (VSSMs), a novel architecture
that combines the strengths of recurrent neural networks
and latent variable models, have demonstrated remark-
able performance in visual perception tasks by efficiently
capturing long-range dependencies and modeling complex
visual dynamics. However, their robustness under natu-
ral and adversarial perturbations remains a critical con-
cern. In this work, we present a comprehensive evaluation
of VSSMs’ robustness under various perturbation scenar-
ios, including occlusions, image structure, common corrup-
tions, and adversarial attacks, and compare their perfor-
mance to well-established architectures such as transform-
ers and Convolutional Neural Networks. Furthermore, we
investigate the resilience of VSSMs to object-background
compositional changes on sophisticated benchmarks de-
signed to test model performance in complex visual scenes.
We also assess their robustness on object detection and
segmentation tasks using corrupted datasets that mimic
real-world scenarios. To gain a deeper understanding of
VSSMs’ adversarial robustness, we conduct a frequency-
based analysis of adversarial attacks, evaluating their per-
formance against low-frequency and high-frequency pertur-
bations. Our findings highlight the strengths and limitations
of VSSMs in handling complex visual corruptions, offering
valuable insights for future research. Our code and models
are available on GitHub.

1. Introduction
Deep learning models such as Convolutional Neural Net-
works (CNNs) [24] and Vision Transformers [9] have
achieved remarkable success across various visual percep-
tion tasks, including image classification, object detection,
and semantic segmentation. However, their robustness
across different distribution shifts of the data remains a
significant concern for their deployment in security-critical
applications. Several works [2, 18, 39, 50] have exten-
sively evaluated the robustness of CNNs and Transform-
ers against common corruptions, domain shifts, information
drop, and adversarial attacks, highlighting that a model’s
design impacts its ability to handle adversarial and natural
corruptions, with robustness varying across different archi-
tectures. This observation motivates us to investigate the ro-
bustness of the recently proposed Vision State-Space Mod-
els (VSSMs) [14, 29, 51], a novel architecture designed to
efficiently capture long-range dependencies in visual data.

CNNs are particularly adept at extracting hierarchical
image features due to their shared weights across features,
which help in capturing local-level information. In contrast,
transformer-based models employ an attention mechanism
that captures global information, effectively increasing the
model’s receptive field [9]. This allows transformers to ex-
cel at modeling long-range dependencies. However, a sig-
nificant drawback of transformers is their quadratic compu-
tational scaling with input size, which makes them compu-
tationally expensive for downstream tasks [32]. Recently,
state space sequence models (SSMs) have been adapted
from the natural language domain to vision tasks. Un-
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like transformers, vision-based SSMs offer the capability to
handle long-range dependencies while maintaining a linear
computational cost, providing a more efficient alternative
for vision applications [4, 14, 15, 26, 29, 51].

VSSMs, such as the VMamba [29] and the hy-
brid Mamba-Transformer variant MambaVision [16], have
gained attention in the vision domain due to their impres-
sive performance. These models offer a unique approach to
managing spatial dependencies, which is critical for han-
dling dynamic visual environments. Their ability to se-
lectively adjust interactions between states promises en-
hanced adaptability, a trait that could be pivotal in improv-
ing resilience against perturbations. Given their potential
in safety-critical applications such as autonomous vehicles,
robotics, and healthcare, it is crucial to thoroughly assess
the robustness of these models.

In this paper, we present a comprehensive analysis of the
performance of VSSMs, Vision Transformers, and CNNs
in handling various nuisances for classification, detection,
and segmentation tasks, aiming to provide valuable insights
into their robustness and suitability for real-world applica-
tions. Our evaluation is divided into three main parts, each
addressing a crucial aspect of model robustness.

➊ Occlusions and Information Loss: We rigorously as-
sess the robustness of pure and hybrid VSSMs against
information loss along scanning directions and severe oc-
clusions affecting foreground objects, non-salient back-
ground regions, and random patch drops at multiple lev-
els. This analysis is crucial for understanding how well
VSSMs can handle partial information drop and main-
tain performance despite occlusions. Additionally, we ex-
plore the sensitivity of VSSMs to the overall image struc-
ture and global composition through patch shuffling ex-
periments, providing insights into their ability to capture
global context.
Findings: Our experiments reveal that ConvNext [31]
and VSSM models are superior in handling of sequen-
tial information loss along the scanning direction com-
pared to ViT and Swin models. In scenarios involving ran-
dom, salient, and non-salient patch drops, VSSMs exhibit
the highest overall robustness, although Swin models per-
form better under extreme information loss. Additionally,
VSSM models show greater resilience to spatial structure
disturbances caused by patch shuffling compared to Swin
models.

➋ Common Corruptions: We evaluate the robustness of
VSSM-based classification models against common cor-
ruptions that mimic real-world scenarios. This includes
both global corruptions such as noise, blur, weather, and
digital-based corruptions at multiple intensity levels, and
fine-grained corruptions like object attribute editing and
background manipulations. Furthermore, we extend the
evaluation to VSSM-based detection and segmentation

models to demonstrate their robustness in dense predic-
tion tasks. By testing the models under these diverse and
challenging conditions, we aim to provide a comprehen-
sive understanding of their resilience in real-world appli-
cations.
Findings: For global corruptions, VSSM models expe-
rience the least average performance drop compared to
Swin and ConvNext models. When subjected to fine-
grained corruptions, the VSSM family outperforms all
transformer-based variants and maintains performance
that is either better than or comparable to the advanced
ConvNext models. In dense prediction tasks such as
detection and segmentation, VSSM-based models gener-
ally demonstrate greater resilience and outperform other
models.

➌ Adversarial Attacks: We analyze the robustness of
VSSMs against adversarial attacks in both white-box and
black-box settings. In addition to the standard adver-
sarial evaluation, we conduct a frequency analysis to
demonstrate the resilience of VSSM models against low-
frequency and high-frequency adversarial perturbations.
This analysis provides insights into VSSMs ability to
withstand adversarial perturbations at different frequency
levels.
Findings: For adversarial attacks, smaller VSSM models
exhibit higher robustness against white-box attacks than
Swin Transformers, though this does not scale to larger
VSSMs. VSSMs maintain over 90% robustness against
low-frequency perturbations, even at high perturbation
strengths, but degrade quickly under high-frequency at-
tacks. Across standard attacks, VSSMs outperform Con-
vNext, ViT, and Swin models under smaller perturbation
budgets. In adversarial fine-tuning, VSSMs excel in both
clean and robust accuracy on high-resolution images, but
ViT models outperform them on low-resolution datasets
like CIFAR.
Our findings reveal that VSSM models have both

strengths and limitations in handling various nuisances and
adversarial attacks. They also indicate that a variety of met-
rics is essential to fully evaluate the diverse capabilities of
different architectures. While VSSMs often demonstrate
superior robustness, ConvNext and ViT architectures occa-
sionally outperform them. These insights can inform model
selection for specific applications, considering robustness
requirements in real-world scenarios.

2. Related Work
Robustness of Deep Learning Models: Robustness refers
to a conventionally trained model’s ability to maintain satis-
factory performance under natural and adversarial distribu-
tion shifts [10, 12]. In practice, deep learning-based mod-
els often encounter various types of corruptions, such as
noise, blur, compression artifacts, and adversarial pertur-



bations, which can significantly degrade their performance.
To ensure the reliability and robustness of these models,
it is essential to systematically evaluate their performance
under such challenging conditions. Recent studies have
investigated the robustness of deep learning-based mod-
els across a wide range of areas, including image classi-
fication [18, 20], semantic segmentation [22], object de-
tection [37], video classification [46], point cloud process-
ing [21], and transformer-based architectures [25, 40, 41].
However, there is a lack of similar investigations for vision
state space models (VSSMs), despite their growing popular-
ity and potential applications [6, 28, 45, 47]. In this work,
we aim to bridge this gap by examining how the perfor-
mance of VSSMs is affected by adversarial and common
corruptions.Considering the increasing adoption of VSSMs,
our findings can provide valuable insights for researchers
and practitioners working on developing robust and reliable
vision systems.
State Space Models: State space models (SSMs) [36, 43]
have emerged as a promising method for modeling se-
quential data in deep learning. These models map a 1-
dimensional sequence x(t) ∈ RL to y(t) ∈ RL via an im-
plicit latent state h(t) ∈ RN as:

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t), (1)

where A ∈ RN×N , B ∈ RN×1, and C ∈ RN×1 are
continuous parameters governing the dynamics and output
mapping. To enhance computational efficiency, the continu-
ous SSM is discretized using a zero-order hold assumption,
leading to a discretized form:

ht = Aht−1 +Bxt, yt = Cht, (2)

where A and B are the discrete counterparts of A and B,
obtained via a specified sampling timescale ∆ ∈ R> 0.
The iterative process in Eq. 2 can be further expedited
through parallel computation using a global convolution op-
eration:

y = x⊛K, with K = (CB,CAB, ...,CA
L−1

B), (3)

where K ∈ RL is the kernel used and ⊛ denotes convolu-
tion operator. Recent advancements in SSMs, like Mamba
models [14], introduce dynamic, input-dependent parame-
terization for managing sequential state interactions. This
inspired vision models such as VMamba [29] and Mam-
baVision [16], which combine Mamba with ViT-like hierar-
chies. While these models have been studied for tasks like
detection and segmentation, their robustness against natural
and adversarial corruptions remains underexplored. We aim
to evaluate their resilience to these perturbations, which is
crucial for understanding their potential in real-world appli-
cations and identifying areas for improvement.

3. Robustness of Vision State Space Models
We have broadly categorized the experiments into natural
and adversarial corruption categories to evaluate the robust-
ness of CNNs, transformers, and VSSMs across tiny, small,
and base-model families. For natural corruptions, we con-
duct experiments on classification, detection, and segmenta-
tion tasks. For the classification task, we employ the recent
ConvNext model [31] as a representative of the CNN fam-
ily, while selecting the ViT [9] and Swin [30] family mod-
els for transformer architectures. For VSSMs, we report
results on pure VMamba v2 pretrained models [29] and hy-
brid MambaVision models [16]. For detection and segmen-
tation, we report results using ImageNet-pretrained back-
bones of the specified models. These models are fine-tuned
with the MMDetection [5] and MMSegmentation [7] frame-
works. For detection, we utilize Mask-RCNN [17], and for
segmentation, we use UperNet [44] as the network architec-
ture. To evaluate the robustness of VSSMs against adver-
sarial attacks, we consider imagenet trained classification
models. Furthermore, we use imagenet pretrained mod-
els for adversarial fine-tuning on two downstream datasets;
CIFAR-10 [23] and Imagenette [1]. Evaluations are done
on 224×224 images for classification (except 32×32 for
CIFAR-10), 800×1216 for detection, and 512×512 for seg-
mentation.

3.1. Robustness against Natural Corruptions
We categorize natural corruptions into information drop
and ImageNet-based corruption benchmarks. Informa-
tion drop experiments assess models’ robustness against
various patch perturbations, such as occlusions, random
patch drops, and patch shuffling, assessing their ability to
handle partial information loss and local distortions. All
information drop experiments are conducted on 5000 im-
ages from the ImageNet validation set, following [38].
ImageNet-based corruptions mimic real-world issues such
as noise, blur, weather, and digital corruptions at various
intensities. We also evaluate VSSM-based detectors and
segmentation models under these natural corruptions.

3.1.1. Robustness against Information Drop
Information Drop along the Scanning Axis: VSSM mod-
els scan image patches sequentially along four paths (top-
bottom, bottom-top, left-right, right-left) to capture spatial
information. To study the effectiveness of this 2D-Selective
Scan operation, we investigate the models’ response to in-
formation drop along these scanning directions. We con-
sider two settings: (1) linearly increasing information drop
along the scanning direction, with maximum drop in last-
scanned patches, and (2) linearly increasing drop from start
to the center, then linearly decreasing until the end.

We split the image into n × n non-overlapping patches
and perform the information drop experiments, with the
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Figure 1. Information drop of Tiny and
Small family of models along the scan-
ning direction: the image is split into a
sequence of fixed-size non-overlapping
patches of size 16x16, 8x8, and 4x4.
The first row shows the results of lin-
early increasing the number of pixels
dropped from each patch to the max-
imum threshold (Drop Intensity) along
different scanning directions. The bot-
tom row presents results of linearly in-
creasing the number of pixels dropped
from each patch to the maximum thresh-
old (Drop Intensity) until the center of
the scanning direction. More detailed
analysis is provided in Section A.1 of
the Appendix.

maximum drop in a patch (Drop Intensity) varying from
10% to 100%. In Fig. 1, we report results on informa-
tion drop along top-to-bottom (Direction 1) and left-to-right
(Direction 2) scanning directions. For both settings (1) and
(2) we observe that VMamba and ConvNext models show
high robustness to sequential information drop across vari-
ous thresholds. Overall, ‘T’ and ‘S’ versions of VMmamba
model demonstrate superior performance compared to their
counterparts across different patch sizes. Pure transformer-
based ViT models show poor performance in this experi-
mental setup. We also observe that as we reduce the patch
size for splitting the image, leading to a gradual loss of
information in the scanning direction, the performance of
all the models improves. This implies that handling more
abrupt information loss in fewer and larger patches is chal-
lenging for these models. In Section A.1 of Appendix, we
expand the analysis across base models and all the scanning
directions with varying number of patch sizes. Overall, we
observe that both VMamba and ConvNext are more adept
at handling sequential drop of information along different
scanning directions, compared to hybrid MambaVision,
ViT and Swin Models.
Random Patch Drop: We assess the robustness of VSSMs
in occluded scenarios by randomly dropping patches from
images. We split the image into n × n patches and ran-
domly select the patches whose values will be set to zero.
As shown in Tab.1 (top), when image is split into 16 × 16
patches, VSSMs consistently outperform MambaVision,
ResNet, ConvNeXt, and ViT models in maintaining accu-
racy with increasing numbers of dropped patches. However,
under conditions of extreme spatial information loss, Swin
models demonstrate superior performance, whereas the hy-
brid architecture-based MambaVision performs worst. This
trend persists when the image is split into 8×8 patches, as
illustrated in Tab.1 (bottom), highlighting the robustness
of VSSMs and the exceptional resilience of Swin models
in extreme patch drop scenarios. Results on different patch

sizes showing similar trend are reported in Appendix A.2.
Salient and Non-Salient Patch Drop: We evaluate the ro-
bustness of VSSMs against salient (foreground) and non-
salient (background) patch drop. Using a self-supervised
ViT model, DINO [3], we effectively segment salient ob-
jects by exploiting the spatial positions of information flow-
ing into the final feature vector within the last attention
block. This allows us to control the amount of salient in-
formation captured within the selected patches by thresh-
olding. Similarly, we also select the least salient regions of
the image and drop the patches containing the lowest fore-
ground information [39]. Similar to [39], the patch size is
fixed to 16× 16 for this experiment. Tab. 2 (top) shows that
VSSM models, including VMamba and MambaVision,
demonstrate notable robustness when foreground content
is removed, outperforming both convolutional (ResNet
and ConvNeXt) and the ViT transformer family. Their
performance is on par with the Swin family until a 50%
salient patch drop, beyond which Swin transformers ex-
hibit better robustness, maintaining higher accuracy com-
pared to VSSMs. The trend for non-salient patch drops is
similar and is shown in the Appendix A.3.
Patch Shuffling: VSSMs process images as a sequence of
patches, and the order of these patches represents the overall
image structure and global composition. To evaluate the ro-
bustness of VSSMs to patch permutations, we define a shuf-
fling operation on the input image patches, which destroys
the image structure by changing the order of the patch se-
quence. Based on the dimensions of the patch size, we split
the image into either 4, 8, 16, 32, 64 and 256 patches, which
is then followed by random shuffling of the patches to eval-
uate the performance of models on spatial rearrangement of
information. In Tab. 2 (bottom), we observe that VMamba
family overall performs better than other models when the
spatial structure of the input image is disturbed. VMamba
models generally demonstrate greater resilience to spatial
structure disturbances than Swin models.



Table 1. Top-1 classification accuracy of various architectures under random patch drop occlusions.

ResNet-50 ConvNext-T ConvNext-S ConvNext-B ViT-T ViT-S ViT-B VMamba-T VMamba-S VMamba-B MambaVision-T MambaVision-S MambaVision-B Swin-T Swin-S Swin-B

Patch Size 16× 16 (Percentage of patch drop increasing from top to bottom (10% to 90%))
96.70 97.24 97.78 97.84 92.30 96.08 97.54 97.38 97.94 97.96 97.36 97.82 97.60 97.24 97.60 97.60
75.27 96.49 97.19 97.37 90.83 95.39 96.85 96.49 96.61 97.25 96.24 96.80 97.09 96.76 97.38 97.32
39.93 94.63 95.27 96.48 88.09 94.29 96.27 95.16 92.97 96.25 92.91 94.67 95.74 96.11 96.84 96.79
17.91 89.99 91.12 95.29 85.26 92.35 95.08 93.45 89.74 95.21 87.14 91.19 93.25 94.88 95.88 96.17
6.73 81.43 84.63 93.03 80.08 90.15 92.78 90.52 84.82 93.46 77.02 84.56 88.05 93.38 94.35 95.03
2.43 70.07 74.44 88.76 72.49 85.10 89.21 86.52 78.41 90.89 61.79 76.07 78.92 91.05 92.21 93.25
1.05 57.59 60.15 82.35 61.34 76.56 82.08 80.52 68.40 87.03 42.16 62.44 63.89 87.96 87.84 90.43
0.56 44.67 44.71 71.25 45.63 62.63 70.25 70.39 52.72 79.96 20.73 42.16 43.33 80.65 79.71 84.70
0.45 31.29 28.82 57.71 25.86 41.73 50.08 56.23 34.51 67.56 5.62 21.07 22.21 70.37 66.60 74.38
0.43 16.73 14.98 33.67 7.85 15.86 19.68 34.83 16.82 41.55 1.95 7.08 11.08 47.16 47.85 53.54

Patch Size 8× 8 (Percentage of patch drop increasing from top to bottom (10% to 90%))
96.70 97.24 97.78 97.84 92.32 96.08 97.54 97.38 97.94 97.96 97.36 97.82 97.60 97.24 97.60 97.60
44.91 86.69 91.39 95.63 70.18 88.90 94.23 87.86 85.93 90.20 89.57 91.25 92.32 96.44 96.77 96.76
12.44 68.38 81.13 90.83 42.19 79.72 88.37 79.91 78.23 84.43 73.34 79.03 84.32 95.04 94.87 95.84
3.79 55.12 68.35 84.08 16.91 65.39 76.63 70.40 70.95 78.47 51.09 60.21 71.70 92.87 92.08 94.49
1.35 39.05 54.58 73.51 4.59 46.17 60.12 57.34 59.09 70.04 29.64 39.81 55.01 90.13 88.21 92.40
0.56 23.89 37.94 58.05 1.25 25.91 39.97 43.09 44.08 58.29 13.73 23.86 34.67 85.40 81.87 88.36
0.33 13.33 21.97 40.37 0.45 11.03 21.56 28.25 27.85 43.00 4.90 11.86 16.70 78.76 71.63 81.85
0.21 5.95 9.85 21.51 0.21 3.78 8.85 14.69 12.45 25.75 1.51 4.59 5.90 68.40 53.81 70.03
0.24 2.08 2.31 7.85 0.14 1.02 2.49 5.11 2.45 10.07 0.50 1.06 1.16 52.41 29.58 49.35
0.25 0.46 0.56 1.33 0.16 0.39 0.59 0.75 0.43 1.65 0.22 0.31 0.21 28.46 8.32 23.67

Table 2. Top-1 classification accuracy reported under salient patch drop occlusion and patch shuffling.

ResNet-50 ConvNext-T ConvNext-S ConvNext-B ViT-T ViT-S ViT-B VMamba-T VMamba-S VMamba-B MambaVision-T MambaVision-S MambaVision-B Swin-T Swin-S Swin-B

Salient Patch Drop (Percentage of patch drop from top to bottom(10% to 100%))
92.70 96.88 97.38 97.50 90.46 95.36 94.90 97.04 97.66 97.40 96.88 97.24 97.20 96.94 97.44 97.26
84.86 95.98 96.98 96.86 88.62 94.56 93.92 96.58 96.98 97.14 95.78 96.30 96.62 96.14 97.02 96.90
73.64 94.60 95.86 96.52 85.40 92.70 92.52 95.34 95.82 96.74 93.56 94.82 95.34 95.02 96.22 96.24
60.16 92.52 94.04 94.92 80.94 89.82 89.72 93.88 93.14 95.04 90.08 91.88 93.62 93.28 94.92 94.76
44.78 88.22 90.06 92.60 75.12 85.26 85.34 91.04 89.64 92.74 85.00 87.90 89.84 90.24 92.74 92.98
29.16 81.40 84.02 88.64 65.42 78.06 78.36 86.34 83.66 89.30 76.24 80.32 83.98 86.76 88.88 89.78
16.12 72.32 74.64 82.36 51.60 67.60 68.34 79.24 74.26 83.44 63.44 70.16 74.80 80.32 82.08 83.54
7.38 56.96 58.28 69.44 35.10 50.18 50.80 66.42 59.26 72.88 45.52 52.86 59.08 68.84 71.18 73.30
2.14 33.80 34.96 46.52 14.96 24.26 24.72 43.90 35.38 50.94 22.26 29.24 35.12 46.42 49.58 51.80
0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

Patch Shuffling (From top to bottom, the image is split into 4, 8, 16, 32, 64, and 256 patches)
90.79 95.62 96.57 96.69 85.71 92.88 95.18 95.75 96.73 96.88 95.71 96.33 96.75 95.41 96.05 96.31
82.01 93.61 94.81 95.43 78.67 88.81 92.55 94.66 95.75 96.12 93.94 95.15 95.69 93.99 94.55 95.25
67.09 89.99 91.66 93.05 67.95 81.22 87.88 91.65 93.26 94.27 91.12 92.40 93.48 90.69 91.93 92.77
33.34 80.29 82.06 85.31 42.65 63.97 75.68 85.34 87.10 90.08 80.51 84.34 86.98 85.01 86.33 88.18
10.93 63.33 64.75 69.44 19.05 45.21 55.52 73.72 73.68 80.79 63.59 68.87 73.87 76.60 75.46 80.10
1.07 7.57 5.45 8.02 1.00 3.14 5.00 15.45 13.83 22.50 3.50 5.09 4.62 25.79 12.83 21.08

3.1.2. Robustness against ImageNet Corruptions

To evaluate the robustness of VSSMs in real-world scenar-
ios, we performed experiments on several corrupted ver-
sions of the ImageNet dataset, which can be grouped into
two categories based on the type of changes they intro-
duce to the images. The first category includes datasets
that make overall global compositional changes, such as
ImageNet-C [18], which evaluates robustness against 19
common distortions across five categories (noise, blur,
weather, and digital-based corruptions) with varying sever-
ity levels. Additionally, datasets like ImageNetV2 [42],
ImageNet-A [20], ImageNet-R [19], and ImageNet-S [11]
also fall into this category, as they introduce domain shifts
that affect the global composition of the images. For de-
tails of these datasets, see Appendix B.1. The second

category consists of datasets that provide more control
in editing the images and focus on fine-grained details.
ImageNet-E [27] assesses classifiers’ robustness to changes
in background, object size, position, and direction, while
ImageNet-B [35] introduces diverse object-to-background
changes using text-to-image, image-to-text, and image-to-
segment models, preserving original object semantics while
varying backgrounds to include both natural and adversar-
ial changes. These datasets use diffusion models to generate
various object-to-background compositional changes to test
the resilience of the models.

Robustness against Global Corruptions: The perfor-
mance of various models on ImageNet-C is reported in
terms of the mean corruption error (mCE) in Tab. 3. The
mCE (lower is better) represents the average error of the



Table 3. Top-1 classification accuracy for the domain general-
ization setting across various architectures and datasets. Models
trained on ImageNet are evaluated on datasets with domain shifts.

Model ↓ ImageNet OOD Average(↑) mCE(↓)

ConvNext-T 81.87 67.55 36.90(-44.97)

ViT-T 75.35 153.7 26.88(-48.47)

Swin-T 80.91 77.86 34.00(-46.91)

VMamba-T 82.28 65.05 37.32(-44.96)

MambaVision-T 82.10 66.58 37.66(-44.44)

ConvNext-S 82.82 59.52 39.81(-43.01)

ViT-S 81.40 79.28 v 36.74(-44.66)

Swin-S 82.90 63.04 37.81(-45.09)

VMamba-S 83.48 53.08 40.55(-42.93)

MambaVision-S 83.22 50.50 39.52(-43.70)

ConvNext-B 83.75 56.92 41.68(-42.07)

ViT-B 84.40 42.26 45.49(-38.91)

Swin-B 83.08 64.98 38.97(-44.11)

VMamba-B 83.76 53.76 41.52(-42.24)

MambaVision-B 83.96 49.61 41.98(-41.98)

model across various common corruptions at multiple
intensity levels, normalized by the ResNet-50’s standard
accuracy. VMamba-T has the lowest mCE among all
the ‘T’ versions, followed by MambaVision-S, which
performs significantly better than its ‘S’ counterparts.
However, among the ‘B’ family, ViT-B achieves the lowest
mCE score, , possibly due to ImageNet21k pretraining
and ImageNet 1k finetuning. The table also shows top-
1 accuracy on domain-shifted datasets (ImageNetV2,
ImageNet-A, ImageNet-R, ImageNet-S). ‘T’ and ‘S’
versions of VMamba and MambaVision demonstrate the
least average performance drop compared to Swin and
ConvNext counterparts. For ‘B’ models, ViT performs best,
likely due to ImageNet21k pretraining. For more results,
see Appendix B.1. Furthermore, in Appendix B.2, we
report Expected Calibration Error(ECE) of models across
the mentioned datasets to quantify the reliability of model’s
predicted confidence levels, accompanied by reliability
diagrams for visualization.
Robustness against Fine-grained Corruptions: Tab. 4
(left) shows model robustness on ImageNet-E against
variations in background complexity, object size, and
positioning. Lower λ values indicate low background
texture complexity, higher values indicate high complexity,
with λ = 20 (adv) representing adversarially optimized
high texture complexity. Objects are resized to (0.1,
0.08, 0.05) of original size and randomly placed. VSSM
models (VMamba and MambaVision) demonstrate higher
resilience to background changes compared to Swin and
ViT transformer families, and perform comparably to
ConvNeXt models. As background complexity increases
or object size decreases, all models’ performance declines,
but the drop is less significant for VSSM and ConvNeXt
models, showing their robustness to object size variations.
Similar trends are observed for ImageNet-B (Tab. 4,
right), where backgrounds are modified using a diffusion

model with textual guidance (class/caption information)
or color/texture prompts. The VSSM family, including
VMamba and MambaVision, demonstrates superior
performance compared to all Transformer-based variants
and maintains performance better or comparable to the
advanced ConvNext models. Pure VMamba and hybrid
MambaVision exhibit comparable robustness against
ImageNet corruption when no information is dropped.
For further analysis across more models, see Appendix B.3.

3.1.3. Robustness on Object Detection
We evaluate VSSM, transformer, and CNN robustness for
object detection using COCO-O [8], COCO-DC [35], and
COCO-C datasets. COCO-O includes 6,782 images with
26,624 bounding boxes across six domains (sketch, cartoon,
painting, weather, handmake, tattoo). COCO-DC contains
1,127 COCO 2017 validation images with diffusion model-
induced background changes. COCO-C applies ImageNet-
C style corruptions to the COCO-2017 evaluation set at
various intensities. Performance is assessed using Average
Precision (AP) and AP by object sizes (APs, APm, APl)
on five models: ConvNext-T, Swin-T, Swin-S, VMamba-T,
and VMamba-S.

Fig. 2 shows VMamba-S and VMamba-T consistently
outperforming other architectures in most COCO-O scenar-
ios, leading in original validation and out-of-distribution
domains (cartoon, painting, sketch, weather). However,
all models struggle with the tattoo domain. On average,
VMamba-S and VMamba-T achieve AP scores of 42.2%
and 41.1%, surpassing Swin and ConvNext models. Fig. 3
demonstrates VMamba models’ superior robustness across
various common corruptions in object detection, with even
VMamba-T outperforming larger Swin-S in most scenarios.
All models show performance drops with ‘Glass Blur’ and
‘Zoom Blur’ corruptions. For further details and results on
COCO-DC, see Appendix B.4.

3.1.4. Robustness on Semantic Segmentation
We assess segmentation model robustness using 2,000 im-
ages from the ADE20K [49] validation set, corrupted with
ImageNet-C [18] at various intensities. Performance is eval-
uated using mean Intersection over Union (mIoU).

Fig. 3 shows VMamba-T and VMamba-S consistently
outperforming Swin counterparts across various ImageNet-
C corruptions in segmentation, mirroring trends seen in ob-
ject detection. The high performance of VMamba mod-
els on the original dataset also transfers effectively to the
corrupted version of the dataset. Notably, VMamba-T sur-
passes the larger Swin-S in most corruption scenarios. Ad-
ditional results are provided in Appendix B.4.

3.2. Robustness against Adversarial Attacks
In this section, we evaluate the robustness of VSSMs
against spatial and frequency-based adversarial attacks. We



Table 4. Top-1 classification accuracy of various architectures on the ImageNet-E dataset [27] (left) and ImageNet-B dataset [35] (right).

Dataset → ImageNet-E ImageNet-B
Model ↓ λ = −20 λ = 20 λ = 20(adv) Random-BG 0.1 0.08 0.05 Random Pos. Original Original Caption Class Color Texture

ResNet-50 88.74 86.76 73.02 84.05 89.19 86.60 77.34 73.30 94.55 98.60 94.00 96.60 88.20 85.70
ConvNext-T 90.95 90.03 76.88 88.09 93.01 90.87 83.09 80.19 96.09 98.20 93.20 95.10 88.80 87.40
ConvNext-S 91.96 90.76 78.52 88.99 93.61 91.66 85.34 82.19 96.07 98.80 94.00 96.70 90.70 89.60
ConvNext-B 92.30 91.52 80.44 90.00 93.91 93.01 86.65 83.75 96.41 99.20 93.60 96.40 90.60 91.40
ViT-T 80.81 77.07 46.78 69.07 81.06 76.55 64.13 57.86 91.08 95.20 85.50 90.40 67.30 64.50
ViT-S 86.77 83.46 63.19 80.58 87.98 84.05 74.29 69.94 94.74 97.70 89.20 94.30 84.20 80.60
ViT-B 90.07 87.48 71.28 84.88 91.01 88.64 79.99 76.42 95.66 98.00 90.40 93.80 86.20 84.80
VMamba-T 91.15 89.87 75.18 87.41 92.09 91.06 83.66 79.71 95.84 98.50 92.20 96.30 87.20 86.80
VMamba-S 92.03 90.79 76.15 88.81 93.22 92.25 85.57 81.89 96.37 99.20 94.10 97.40 90.90 89.50
VMamba-B 92.37 91.27 77.30 89.11 93.70 92.64 86.03 83.62 96.37 99.10 94.00 96.50 90.80 89.80
MambaVision-T 90.67 88.83 73.07 86.40 91.93 90.07 81.87 78.42 95.73 98.60 93.70 96.60 89.10 87.70
MambaVision-S 91.22 90.19 75.18 88.19 92.78 91.19 84.01 81.18 96.03 99.40 94.40 97.80 91.40 90.10
MambaVision-B 91.77 90.65 78.42 89.18 93.70 92.81 86.35 83.78 96.30 99.10 94.60 97.20 91.40 90.60
Swin-T 90.05 88.83 71.51 86.19 91.08 88.94 79.39 76.49 95.27 97.90 91.70 95.30 85.50 84.00
Swin-S 90.67 88.86 73.35 87.25 91.91 89.68 81.55 78.81 96.25 98.30 91.80 95.50 86.10 85.40
Swin-B 91.08 89.96 75.09 87.87 92.62 91.22 83.43 80.65 95.95 98.60 92.30 95.60 89.20 86.70
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Figure 2. Average Precision (AP) scores for different architectures on the COCO-O dataset [8], detailing results for small (APs), medium
(APm), and large objects (APl).

also compare the performance of adversarially fine-tuned
VSSM models on CIFAR-10 [23] and Imagenette [1] down-
stream dataset with ViT and Swin models.
Adversarial Attacks in Spatial Domain: We conduct ex-
periments in both white-box and black-box settings us-
ing the Fast Gradient Sign Method (FGSM) [13] and Pro-
jected Gradient Descent (PGD) [33] with an l∞-norm and
ϵ = 8/255. FGSM is a single-step process, while PGD op-
erates as a multistep method, iterating for 20 steps with a
step size of 2/255. Tab. 5 (top) displays the robust accu-
racy scores under white-box (diagonal entries) and black-
box (off-diagonal entries) adversarial attacks for FGSM. ‘T’
and ‘S’ versions of VMamba and MambaVision models
exhibit higher white-box attack robustness compared to
their Swin Transformer counterparts, but this pattern
does not extend to the larger ‘B’ models. This indicates
that VSSM’s robustness advantage over Swin Transformers
may not consistently scale with increased model size. For
black-box settings, attacks transfer rate is high within the

same architecture family than across different architectures.
As expected, under stronger iteraive attack (PGD), all mod-
els’ performance almost drops to zero in white-box settings.
For the black-box transferability, we observe similar trends
to FGSM attack (see Appendix C).
Adversarial Attacks in the Frequency Domain: We eval-
uate VMamba and MambaVision’s robustness against
frequency-specific PGD attacks and report the results in Ap-
pendix C. VMamba and MambaVision maintain above 90%
robustness for low-frequency perturbations up to ϵ = 16,
comparable to ConvNext and Swin. For high-frequency
attacks, all models’ robustness decreases rapidly, with
ViT models showing highest resilience. In standard full-
frequency attacks, VSSM models display higher robustness
than ConvNext, ViT, and Swin.
Adversarial Fine-tuning on Downstream Datasets: We
adversarially fine-tune ImageNet pretrained VSSM, ViT,
and Swin on downstream datasets using the TRADES [48]
objective with varying robustness strength β and an l∞
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Figure 3. Performance comparison of different architectures on the AED20k-C and COCO-C datasets for segmentation (top) and detection
(bottom) tasks. The top figure shows the Mean Intersection over Union (mIoU) score on the AED20k-C dataset, while the Mean Average
Precision (mAP) score on the COCO-C dataset.

Table 5. Robust accuracy of models under white-box and black-box settings for FGSM attack. Adversarial examples crafted on surrogate
models are used to evaluate robustness of target models.

Target → VMamba-T VMamba-S VMamba-B MambaVision-T MambaVision-S MambaVision-B ResNet-50 ConvNext-T ConvNext-S ConvNext-B ViT-T ViT-S ViT-B Swin-T Swin-S Swin-B

Surrogate ↓ Fast Gradient Sign Method (FGSM) at ϵ = 8
255

VMamba-T 42.90 66.34 65.10 74.44 73.00 73.16 80.20 72.66 73.80 72.84 79.46 83.64 86.94 72.22 76.38 74.60
VMamba-S 62.24 48.42 63.00 71.84 71.92 71.34 79.70 71.40 71.04 70.18 78.42 81.56 84.58 70.96 72.92 71.14
VMamba-B 65.52 66.96 51.24 75.22 73.82 73.08 81.22 73.54 73.20 72.32 79.12 83.62 86.24 73.24 76.30 73.88
MambaVision-T 77.74 79.04 79.78 46.18 73.30 75.64 82.06 79.50 80.88 81.82 78.30 84.20 87.86 77.78 81.24 80.80
MambaVision-S 77.86 79.56 79.24 74.96 53.42 73.84 83.60 80.40 81.14 81.26 79.90 85.64 88.52 78.50 82.40 81.88
MambaVision-B 75.90 77.84 77.00 75.46 71.96 52.68 83.46 80.24 80.52 79.92 79.82 85.18 88.12 78.46 81.60 80.30
ResNet-50 81.38 83.24 83.84 81.06 82.54 84.88 30.46 80.30 82.20 83.38 75.94 84.74 89.12 80.64 85.00 85.42
ConvNext-T 69.00 71.46 71.18 73.50 73.92 74.40 77.96 36.36 61.96 63.76 76.92 82.74 85.58 67.06 71.88 70.78
ConvNext-S 69.54 70.62 70.48 74.68 74.38 75.24 79.48 63.48 49.10 63.62 78.48 82.94 85.02 69.24 71.54 69.74
ConvNext-B 70.54 71.78 69.78 76.78 75.02 74.82 81.72 67.34 66.24 51.32 80.26 83.98 86.22 69.86 73.44 70.84
ViT-T 85.92 88.30 88.88 82.16 85.06 87.24 82.68 85.08 86.56 88.06 2.28 50.04 69.90 75.66 79.72 82.32
ViT-S 81.74 83.76 84.46 78.94 80.78 82.68 81.70 82.34 82.78 84.38 45.40 11.02 54.82 72.50 75.98 77.88
ViT-B 82.46 84.02 84.48 80.40 81.82 82.46 81.90 82.04 82.24 83.62 58.50 53.84 24.24 75.82 77.62 78.54
Swin-T 72.40 76.06 75.58 76.80 77.16 78.06 82.82 71.46 72.12 71.96 76.48 80.66 85.46 28.86 56.22 55.12
Swin-S 78.24 79.10 79.30 80.12 81.90 81.40 85.46 77.96 77.10 77.02 79.38 83.04 86.58 61.94 48.00 63.90
Swin-B 78.88 79.40 79.04 81.48 82.16 81.04 86.60 78.16 78.46 77.32 81.48 84.74 87.64 66.82 68.28 54.76

perturbation budget ϵ = 8
255 . In Fig. 4, we plot the clean

accuracy and robust accuracy under PGD-100 attack at
ϵ = 8

255 . On Imagennette [1], VSSM-T shows strong per-
formance in both clean and robust accuracy across different
β levels, followed closely by Swin-T, while ViT-T exhibits
the lowest robustness. However, on the low-resolution
CIFAR-10 dataset with significantly lower number of
patches, ViT models perform better than Mamba-based
VSSM models.
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Figure 4. Clean and Robust accuracy of models evaluated on
CIFAR-10 (left) and Imagenette (right).

4. Conclusion
In conclusion, we present a comprehensive evaluation of the
robustness of Vision State-Space Models (VSSMs) under
diverse natural and adversarial image manipulations, high-
lighting both their strengths and weaknesses compared to
transformers and CNNs. Through rigorous experiments,
we demonstrated the capabilities and limitations of VSSM-
based classifiers in handling occlusions, common corrup-
tions, and adversarial attacks, as well as their resilience to
object-background compositional changes in complex vi-
sual scenes. Additionally, we show that VSSM-based mod-
els are generally more robust to real-world corruptions in
the dense prediction tasks, including detection and segmen-
tation. As an early work in this area, Our findings provide
insights into the robustness of Visual State Space Models
across diverse settings, laying the groundwork for future re-
search to improve the reliability of current visual perception
systems that depend on these models.
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